Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
3 |
+
inference: false
|
4 |
+
license: apache-2.0
|
5 |
+
model_creator: Mistral AI
|
6 |
+
model_name: Mistral 7B Instruct v0.1
|
7 |
+
model_type: mistral
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
prompt_template: '<s>[INST] {prompt} [/INST]
|
10 |
+
|
11 |
+
'
|
12 |
+
quantized_by: TheBloke
|
13 |
+
tags:
|
14 |
+
- finetuned
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- header start -->
|
18 |
+
<!-- 200823 -->
|
19 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
20 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
21 |
+
</div>
|
22 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
23 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
24 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
25 |
+
</div>
|
26 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
27 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
28 |
+
</div>
|
29 |
+
</div>
|
30 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
31 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
32 |
+
<!-- header end -->
|
33 |
+
|
34 |
+
# Mistral 7B Instruct v0.1 - AWQ
|
35 |
+
- Model creator: [Mistral AI](https://huggingface.co/mistralai)
|
36 |
+
- Original model: [Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
37 |
+
|
38 |
+
<!-- description start -->
|
39 |
+
## Description
|
40 |
+
|
41 |
+
This repo contains AWQ model files for [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
|
42 |
+
|
43 |
+
|
44 |
+
### About AWQ
|
45 |
+
|
46 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
|
47 |
+
|
48 |
+
It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of Llama AWQ models for high-throughput concurrent inference in multi-user server scenarios.
|
49 |
+
|
50 |
+
As of September 25th 2023, preliminary Llama-only AWQ support has also been added to [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference).
|
51 |
+
|
52 |
+
Note that, at the time of writing, overall throughput is still lower than running vLLM or TGI with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
|
53 |
+
<!-- description end -->
|
54 |
+
<!-- repositories-available start -->
|
55 |
+
## Repositories available
|
56 |
+
|
57 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
|
58 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
|
59 |
+
* [Mistral AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
60 |
+
<!-- repositories-available end -->
|
61 |
+
|
62 |
+
<!-- prompt-template start -->
|
63 |
+
## Prompt template: Mistral
|
64 |
+
|
65 |
+
```
|
66 |
+
<s>[INST] {prompt} [/INST]
|
67 |
+
|
68 |
+
```
|
69 |
+
|
70 |
+
<!-- prompt-template end -->
|
71 |
+
|
72 |
+
|
73 |
+
<!-- README_AWQ.md-provided-files start -->
|
74 |
+
## Provided files, and AWQ parameters
|
75 |
+
|
76 |
+
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
|
77 |
+
|
78 |
+
Models are released as sharded safetensors files.
|
79 |
+
|
80 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
81 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
82 |
+
| [main](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB
|
83 |
+
|
84 |
+
<!-- README_AWQ.md-provided-files end -->
|
85 |
+
|
86 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
87 |
+
## Serving this model from vLLM
|
88 |
+
|
89 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
90 |
+
|
91 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
|
92 |
+
|
93 |
+
```shell
|
94 |
+
python3 python -m vllm.entrypoints.api_server --model TheBloke/Mistral-7B-Instruct-v0.1-AWQ --quantization awq --dtype half
|
95 |
+
```
|
96 |
+
|
97 |
+
Note: at the time of writing, vLLM has not yet done a new release with support for the `quantization` parameter.
|
98 |
+
|
99 |
+
If you try the code below and get an error about `quantization` being unrecognised, please install vLLM from Github source.
|
100 |
+
|
101 |
+
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
|
102 |
+
|
103 |
+
```python
|
104 |
+
from vllm import LLM, SamplingParams
|
105 |
+
|
106 |
+
prompts = [
|
107 |
+
"Hello, my name is",
|
108 |
+
"The president of the United States is",
|
109 |
+
"The capital of France is",
|
110 |
+
"The future of AI is",
|
111 |
+
]
|
112 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
113 |
+
|
114 |
+
llm = LLM(model="TheBloke/Mistral-7B-Instruct-v0.1-AWQ", quantization="awq", dtype="half")
|
115 |
+
|
116 |
+
outputs = llm.generate(prompts, sampling_params)
|
117 |
+
|
118 |
+
# Print the outputs.
|
119 |
+
for output in outputs:
|
120 |
+
prompt = output.prompt
|
121 |
+
generated_text = output.outputs[0].text
|
122 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
123 |
+
```
|
124 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
125 |
+
|
126 |
+
<!-- README_AWQ.md-use-from-python start -->
|
127 |
+
## Serving this model from TGI
|
128 |
+
|
129 |
+
TGI merged support for AWQ on September 25th, 2023. At the time of writing you need to use the `:latest` Docker container: `ghcr.io/huggingface/text-generation-inference:latest`
|
130 |
+
|
131 |
+
Add the parameter `--quantize awq` for AWQ support.
|
132 |
+
|
133 |
+
Example parameters:
|
134 |
+
```shell
|
135 |
+
--model-id TheBloke/Mistral-7B-Instruct-v0.1-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
|
136 |
+
```
|
137 |
+
|
138 |
+
## How to use this AWQ model from Python code
|
139 |
+
|
140 |
+
### Install the necessary packages
|
141 |
+
|
142 |
+
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
|
143 |
+
|
144 |
+
```shell
|
145 |
+
pip3 install autoawq
|
146 |
+
```
|
147 |
+
|
148 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
149 |
+
|
150 |
+
```shell
|
151 |
+
pip3 uninstall -y autoawq
|
152 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
153 |
+
cd AutoAWQ
|
154 |
+
pip3 install .
|
155 |
+
```
|
156 |
+
|
157 |
+
### You can then try the following example code
|
158 |
+
|
159 |
+
```python
|
160 |
+
from awq import AutoAWQForCausalLM
|
161 |
+
from transformers import AutoTokenizer
|
162 |
+
|
163 |
+
model_name_or_path = "TheBloke/Mistral-7B-Instruct-v0.1-AWQ"
|
164 |
+
|
165 |
+
# Load model
|
166 |
+
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
|
167 |
+
trust_remote_code=False, safetensors=True)
|
168 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
|
169 |
+
|
170 |
+
prompt = "Tell me about AI"
|
171 |
+
prompt_template=f'''<s>[INST] {prompt} [/INST]
|
172 |
+
|
173 |
+
'''
|
174 |
+
|
175 |
+
print("\n\n*** Generate:")
|
176 |
+
|
177 |
+
tokens = tokenizer(
|
178 |
+
prompt_template,
|
179 |
+
return_tensors='pt'
|
180 |
+
).input_ids.cuda()
|
181 |
+
|
182 |
+
# Generate output
|
183 |
+
generation_output = model.generate(
|
184 |
+
tokens,
|
185 |
+
do_sample=True,
|
186 |
+
temperature=0.7,
|
187 |
+
top_p=0.95,
|
188 |
+
top_k=40,
|
189 |
+
max_new_tokens=512
|
190 |
+
)
|
191 |
+
|
192 |
+
print("Output: ", tokenizer.decode(generation_output[0]))
|
193 |
+
|
194 |
+
"""
|
195 |
+
# Inference should be possible with transformers pipeline as well in future
|
196 |
+
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
|
197 |
+
from transformers import pipeline
|
198 |
+
|
199 |
+
print("*** Pipeline:")
|
200 |
+
pipe = pipeline(
|
201 |
+
"text-generation",
|
202 |
+
model=model,
|
203 |
+
tokenizer=tokenizer,
|
204 |
+
max_new_tokens=512,
|
205 |
+
do_sample=True,
|
206 |
+
temperature=0.7,
|
207 |
+
top_p=0.95,
|
208 |
+
top_k=40,
|
209 |
+
repetition_penalty=1.1
|
210 |
+
)
|
211 |
+
|
212 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
213 |
+
"""
|
214 |
+
```
|
215 |
+
<!-- README_AWQ.md-use-from-python end -->
|
216 |
+
|
217 |
+
<!-- README_AWQ.md-compatibility start -->
|
218 |
+
## Compatibility
|
219 |
+
|
220 |
+
The files provided are tested to work with:
|
221 |
+
|
222 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
|
223 |
+
- [vLLM](https://github.com/vllm-project/vllm)
|
224 |
+
- [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
225 |
+
|
226 |
+
TGI merged AWQ support on September 25th, 2023: [TGI PR #1054](https://github.com/huggingface/text-generation-inference/pull/1054). Use the `:latest` Docker container until the next TGI release is made.
|
227 |
+
|
228 |
+
<!-- README_AWQ.md-compatibility end -->
|
229 |
+
|
230 |
+
<!-- footer start -->
|
231 |
+
<!-- 200823 -->
|
232 |
+
## Discord
|
233 |
+
|
234 |
+
For further support, and discussions on these models and AI in general, join us at:
|
235 |
+
|
236 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
237 |
+
|
238 |
+
## Thanks, and how to contribute
|
239 |
+
|
240 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
241 |
+
|
242 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
243 |
+
|
244 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
245 |
+
|
246 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
247 |
+
|
248 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
249 |
+
|
250 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
251 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
252 |
+
|
253 |
+
**Special thanks to**: Aemon Algiz.
|
254 |
+
|
255 |
+
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
|
256 |
+
|
257 |
+
|
258 |
+
Thank you to all my generous patrons and donaters!
|
259 |
+
|
260 |
+
And thank you again to a16z for their generous grant.
|
261 |
+
|
262 |
+
<!-- footer end -->
|
263 |
+
|
264 |
+
# Original model card: Mistral AI's Mistral 7B Instruct v0.1
|
265 |
+
|
266 |
+
|
267 |
+
# Model Card for Mistral-7B-Instruct-v0.1
|
268 |
+
|
269 |
+
The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.
|
270 |
+
|
271 |
+
For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/)
|
272 |
+
|
273 |
+
## Instruction format
|
274 |
+
|
275 |
+
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
276 |
+
|
277 |
+
E.g.
|
278 |
+
|
279 |
+
```python
|
280 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
281 |
+
|
282 |
+
device = "cuda" # the device to load the model onto
|
283 |
+
|
284 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
285 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
286 |
+
|
287 |
+
text = "<s>[INST] What is your favourite condiment? [/INST]"
|
288 |
+
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
289 |
+
"[INST] Do you have mayonnaise recipes? [/INST]"
|
290 |
+
|
291 |
+
encodeds = tokenizer(text, return_tensors="pt", add_special_tokens=False)
|
292 |
+
|
293 |
+
model_inputs = encodeds.to(device)
|
294 |
+
model.to(device)
|
295 |
+
|
296 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True)
|
297 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
298 |
+
print(decoded[0])
|
299 |
+
```
|
300 |
+
|
301 |
+
## Model Architecture
|
302 |
+
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
|
303 |
+
- Grouped-Query Attention
|
304 |
+
- Sliding-Window Attention
|
305 |
+
- Byte-fallback BPE tokenizer
|
306 |
+
|
307 |
+
## The Mistral AI Team
|
308 |
+
|
309 |
+
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
|