Update README.md
Browse files
README.md
CHANGED
@@ -49,7 +49,9 @@ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization metho
|
|
49 |
|
50 |
These are experimental first AWQs for the brand-new model format, Mistral.
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
<!-- description end -->
|
55 |
<!-- repositories-available start -->
|
@@ -84,6 +86,43 @@ Models are released as sharded safetensors files.
|
|
84 |
|
85 |
<!-- README_AWQ.md-provided-files end -->
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
<!-- README_AWQ.md-use-from-python start -->
|
89 |
## How to use this AWQ model from Python code
|
|
|
49 |
|
50 |
These are experimental first AWQs for the brand-new model format, Mistral.
|
51 |
|
52 |
+
As of September 29th 2023, they are supported by AutoAWQ, and vLLM (version 0.2).
|
53 |
+
|
54 |
+
To use from AutoAWQ requires installing both AutoAWQ and Transformers from Github. More details are below.
|
55 |
|
56 |
<!-- description end -->
|
57 |
<!-- repositories-available start -->
|
|
|
86 |
|
87 |
<!-- README_AWQ.md-provided-files end -->
|
88 |
|
89 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
90 |
+
## Serving this model from vLLM
|
91 |
+
|
92 |
+
Make sure you are using vLLM version 0.2.
|
93 |
+
|
94 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
95 |
+
|
96 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
|
97 |
+
|
98 |
+
```shell
|
99 |
+
python3 python -m vllm.entrypoints.api_server --model TheBloke/Mistral-7B-v0.1-AWQ --quantization awq --dtype float16
|
100 |
+
```
|
101 |
+
|
102 |
+
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
|
103 |
+
|
104 |
+
```python
|
105 |
+
from vllm import LLM, SamplingParams
|
106 |
+
|
107 |
+
prompts = [
|
108 |
+
"Hello, my name is",
|
109 |
+
"The president of the United States is",
|
110 |
+
"The capital of France is",
|
111 |
+
"The future of AI is",
|
112 |
+
]
|
113 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
114 |
+
|
115 |
+
llm = LLM(model="TheBloke/Mistral-7B-v0.1-AWQ", quantization="awq", dtype="float16")
|
116 |
+
|
117 |
+
outputs = llm.generate(prompts, sampling_params)
|
118 |
+
|
119 |
+
# Print the outputs.
|
120 |
+
for output in outputs:
|
121 |
+
prompt = output.prompt
|
122 |
+
generated_text = output.outputs[0].text
|
123 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
124 |
+
```
|
125 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
126 |
|
127 |
<!-- README_AWQ.md-use-from-python start -->
|
128 |
## How to use this AWQ model from Python code
|