TheBloke commited on
Commit
e28763e
·
1 Parent(s): 37bcb90

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +404 -0
README.md ADDED
@@ -0,0 +1,404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mlabonne/NeuralPipe-7B-slerp
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Maxime Labonne
6
+ model_name: NeuralPipe 7B SLERP
7
+ model_type: mistral
8
+ prompt_template: '{prompt}
9
+
10
+ '
11
+ quantized_by: TheBloke
12
+ tags:
13
+ - merge
14
+ - mergekit
15
+ ---
16
+ <!-- markdownlint-disable MD041 -->
17
+
18
+ <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
+ <!-- header end -->
34
+
35
+ # NeuralPipe 7B SLERP - AWQ
36
+ - Model creator: [Maxime Labonne](https://huggingface.co/mlabonne)
37
+ - Original model: [NeuralPipe 7B SLERP](https://huggingface.co/mlabonne/NeuralPipe-7B-slerp)
38
+
39
+ <!-- description start -->
40
+ ## Description
41
+
42
+ This repo contains AWQ model files for [Maxime Labonne's NeuralPipe 7B SLERP](https://huggingface.co/mlabonne/NeuralPipe-7B-slerp).
43
+
44
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
45
+
46
+
47
+ ### About AWQ
48
+
49
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
50
+
51
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
52
+
53
+ It is supported by:
54
+
55
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
56
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
57
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
58
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
59
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
60
+
61
+ <!-- description end -->
62
+ <!-- repositories-available start -->
63
+ ## Repositories available
64
+
65
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-AWQ)
66
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-GPTQ)
67
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-GGUF)
68
+ * [Maxime Labonne's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mlabonne/NeuralPipe-7B-slerp)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: Unknown
73
+
74
+ ```
75
+ {prompt}
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_AWQ.md-provided-files start -->
83
+ ## Provided files, and AWQ parameters
84
+
85
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
86
+
87
+ Models are released as sharded safetensors files.
88
+
89
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
90
+ | ------ | ---- | -- | ----------- | ------- | ---- |
91
+ | [main](https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
92
+
93
+ <!-- README_AWQ.md-provided-files end -->
94
+
95
+ <!-- README_AWQ.md-text-generation-webui start -->
96
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
97
+
98
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
+
100
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
101
+
102
+ 1. Click the **Model tab**.
103
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/NeuralPipe-7B-slerp-AWQ`.
104
+ 3. Click **Download**.
105
+ 4. The model will start downloading. Once it's finished it will say "Done".
106
+ 5. In the top left, click the refresh icon next to **Model**.
107
+ 6. In the **Model** dropdown, choose the model you just downloaded: `NeuralPipe-7B-slerp-AWQ`
108
+ 7. Select **Loader: AutoAWQ**.
109
+ 8. Click Load, and the model will load and is now ready for use.
110
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
111
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
112
+ <!-- README_AWQ.md-text-generation-webui end -->
113
+
114
+ <!-- README_AWQ.md-use-from-vllm start -->
115
+ ## Multi-user inference server: vLLM
116
+
117
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
118
+
119
+ - Please ensure you are using vLLM version 0.2 or later.
120
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
121
+
122
+ For example:
123
+
124
+ ```shell
125
+ python3 -m vllm.entrypoints.api_server --model TheBloke/NeuralPipe-7B-slerp-AWQ --quantization awq --dtype auto
126
+ ```
127
+
128
+ - When using vLLM from Python code, again set `quantization=awq`.
129
+
130
+ For example:
131
+
132
+ ```python
133
+ from vllm import LLM, SamplingParams
134
+
135
+ prompts = [
136
+ "Tell me about AI",
137
+ "Write a story about llamas",
138
+ "What is 291 - 150?",
139
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
140
+ ]
141
+ prompt_template=f'''{prompt}
142
+ '''
143
+
144
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
145
+
146
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
147
+
148
+ llm = LLM(model="TheBloke/NeuralPipe-7B-slerp-AWQ", quantization="awq", dtype="auto")
149
+
150
+ outputs = llm.generate(prompts, sampling_params)
151
+
152
+ # Print the outputs.
153
+ for output in outputs:
154
+ prompt = output.prompt
155
+ generated_text = output.outputs[0].text
156
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
157
+ ```
158
+ <!-- README_AWQ.md-use-from-vllm start -->
159
+
160
+ <!-- README_AWQ.md-use-from-tgi start -->
161
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
162
+
163
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
164
+
165
+ Example Docker parameters:
166
+
167
+ ```shell
168
+ --model-id TheBloke/NeuralPipe-7B-slerp-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
169
+ ```
170
+
171
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
172
+
173
+ ```shell
174
+ pip3 install huggingface-hub
175
+ ```
176
+
177
+ ```python
178
+ from huggingface_hub import InferenceClient
179
+
180
+ endpoint_url = "https://your-endpoint-url-here"
181
+
182
+ prompt = "Tell me about AI"
183
+ prompt_template=f'''{prompt}
184
+ '''
185
+
186
+ client = InferenceClient(endpoint_url)
187
+ response = client.text_generation(prompt,
188
+ max_new_tokens=128,
189
+ do_sample=True,
190
+ temperature=0.7,
191
+ top_p=0.95,
192
+ top_k=40,
193
+ repetition_penalty=1.1)
194
+
195
+ print(f"Model output: ", response)
196
+ ```
197
+ <!-- README_AWQ.md-use-from-tgi end -->
198
+
199
+ <!-- README_AWQ.md-use-from-python start -->
200
+ ## Inference from Python code using Transformers
201
+
202
+ ### Install the necessary packages
203
+
204
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
205
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
206
+
207
+ ```shell
208
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
209
+ ```
210
+
211
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
212
+
213
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
214
+
215
+ ```shell
216
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
217
+ ```
218
+
219
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
220
+
221
+ ```shell
222
+ pip3 uninstall -y autoawq
223
+ git clone https://github.com/casper-hansen/AutoAWQ
224
+ cd AutoAWQ
225
+ pip3 install .
226
+ ```
227
+
228
+ ### Transformers example code (requires Transformers 4.35.0 and later)
229
+
230
+ ```python
231
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
232
+
233
+ model_name_or_path = "TheBloke/NeuralPipe-7B-slerp-AWQ"
234
+
235
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
236
+ model = AutoModelForCausalLM.from_pretrained(
237
+ model_name_or_path,
238
+ low_cpu_mem_usage=True,
239
+ device_map="cuda:0"
240
+ )
241
+
242
+ # Using the text streamer to stream output one token at a time
243
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
244
+
245
+ prompt = "Tell me about AI"
246
+ prompt_template=f'''{prompt}
247
+ '''
248
+
249
+ # Convert prompt to tokens
250
+ tokens = tokenizer(
251
+ prompt_template,
252
+ return_tensors='pt'
253
+ ).input_ids.cuda()
254
+
255
+ generation_params = {
256
+ "do_sample": True,
257
+ "temperature": 0.7,
258
+ "top_p": 0.95,
259
+ "top_k": 40,
260
+ "max_new_tokens": 512,
261
+ "repetition_penalty": 1.1
262
+ }
263
+
264
+ # Generate streamed output, visible one token at a time
265
+ generation_output = model.generate(
266
+ tokens,
267
+ streamer=streamer,
268
+ **generation_params
269
+ )
270
+
271
+ # Generation without a streamer, which will include the prompt in the output
272
+ generation_output = model.generate(
273
+ tokens,
274
+ **generation_params
275
+ )
276
+
277
+ # Get the tokens from the output, decode them, print them
278
+ token_output = generation_output[0]
279
+ text_output = tokenizer.decode(token_output)
280
+ print("model.generate output: ", text_output)
281
+
282
+ # Inference is also possible via Transformers' pipeline
283
+ from transformers import pipeline
284
+
285
+ pipe = pipeline(
286
+ "text-generation",
287
+ model=model,
288
+ tokenizer=tokenizer,
289
+ **generation_params
290
+ )
291
+
292
+ pipe_output = pipe(prompt_template)[0]['generated_text']
293
+ print("pipeline output: ", pipe_output)
294
+
295
+ ```
296
+ <!-- README_AWQ.md-use-from-python end -->
297
+
298
+ <!-- README_AWQ.md-compatibility start -->
299
+ ## Compatibility
300
+
301
+ The files provided are tested to work with:
302
+
303
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
304
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
305
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
306
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
307
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
308
+
309
+ <!-- README_AWQ.md-compatibility end -->
310
+
311
+ <!-- footer start -->
312
+ <!-- 200823 -->
313
+ ## Discord
314
+
315
+ For further support, and discussions on these models and AI in general, join us at:
316
+
317
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
318
+
319
+ ## Thanks, and how to contribute
320
+
321
+ Thanks to the [chirper.ai](https://chirper.ai) team!
322
+
323
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
324
+
325
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
326
+
327
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
328
+
329
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
330
+
331
+ * Patreon: https://patreon.com/TheBlokeAI
332
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
333
+
334
+ **Special thanks to**: Aemon Algiz.
335
+
336
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
337
+
338
+
339
+ Thank you to all my generous patrons and donaters!
340
+
341
+ And thank you again to a16z for their generous grant.
342
+
343
+ <!-- footer end -->
344
+
345
+ # Original model card: Maxime Labonne's NeuralPipe 7B SLERP
346
+
347
+
348
+ # NeuralPipe-7B
349
+
350
+ This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
351
+ * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
352
+ * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
353
+
354
+ ## 🧩 Configuration
355
+
356
+ ```yaml
357
+ slices:
358
+ - sources:
359
+ - model: OpenPipe/mistral-ft-optimized-1218
360
+ layer_range: [0, 32]
361
+ - model: mlabonne/NeuralHermes-2.5-Mistral-7B
362
+ layer_range: [0, 32]
363
+ merge_method: slerp
364
+ base_model: OpenPipe/mistral-ft-optimized-1218
365
+ parameters:
366
+ t:
367
+ - filter: self_attn
368
+ value: [0, 0.5, 0.3, 0.7, 1]
369
+ - filter: mlp
370
+ value: [1, 0.5, 0.7, 0.3, 0]
371
+ - value: 0.5
372
+ dtype: bfloat16
373
+ ```
374
+
375
+ ## 💻 Usage
376
+
377
+ ```python
378
+ !pip install -qU transformers accelerate
379
+
380
+ from transformers import AutoTokenizer
381
+ import transformers
382
+ import torch
383
+
384
+ model = "mlabonne/NeuralPipe-7B-slerp"
385
+ messages = [{"role": "user", "content": "What is a large language model?"}]
386
+
387
+ tokenizer = AutoTokenizer.from_pretrained(model)
388
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
389
+ pipeline = transformers.pipeline(
390
+ "text-generation",
391
+ model=model,
392
+ torch_dtype=torch.float16,
393
+ device_map="auto",
394
+ )
395
+
396
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
397
+ print(outputs[0]["generated_text"])
398
+ ```
399
+
400
+ Output:
401
+
402
+ ```
403
+ A large language model is an AI system that uses deep learning techniques to process and understand vast amounts of natural language data. It is designed to generate human-like text, perform complex language tasks, and understand the context, nuance, and meaning of textual data. These models are trained on large datasets, often including billions of words, to learn the patterns and relationships in language. As a result, they can generate coherent and contextually relevant text, answer questions, and perform a variety of other language-related tasks. Some well-known large language models include OpenAI's GPT-3, Google's BERT, and Facebook's RoBERTa.
404
+ ```