--- license: other inference: false --- # OpenAssistant LLaMA 30B SFT 7 GGML This is a repo of GGML format models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor). It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit and 5bit GGML for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp). This is epoch 7 of OpenAssistant's training of their Llama 30B model. ## Repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ). * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML). * [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF). ## PROMPT TEMPLATE This model requires the following prompt template: ``` <|prompter|> prompt goes here <|assistant|>: ``` ## REQUIRES LATEST LLAMA.CPP (May 12th 2023 - commit b9fd7ee)! llama.cpp recently made a breaking change to its quantisation methods. I have re-quantised the GGML files in this repo. Therefore you will require llama.cpp compiled on May 12th or later (commit `b9fd7ee` or later) to use them. The previous files, which will still work in older versions of llama.cpp, can be found in branch `previous_llama`. ## Provided files | Name | Quant method | Bits | Size | RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | `OpenAssistant-30B-epoch7.ggml.q4_0.bin` | q4_0 | 4bit | 20.3GB | 23GB | 4-bit. | `OpenAssistant-30B-epoch7.ggml.q5_0.bin` | q5_0 | 5bit | 22.4GB | 25GB | 5-bit. Higher accuracy, higher resource usage and slower inference. | `OpenAssistant-30B-epoch7.ggml.q5_1.bin` | q5_1 | 5bit | 24.4GB | 27GB | 5-bit. Even higher accuracy, resource usage and slower inference. | ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 18 -m OpenAssistant-30B-epoch7.ggml.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|prompter|>Write a very story about llamas <|assistant|>:" ``` Change `-t 18` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. ## How to run in `text-generation-webui` GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual. Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). Note: at this time text-generation-webui will likely not support the newly updated llama.cpp quantisation methods. **Thireus** has written a [great guide on how to update it to the latest llama.cpp code](https://huggingface.co/TheBloke/wizardLM-7B-GGML/discussions/5) so that you can likely get support for the new quantisation methods sooner. # Original model card ``` llama-30b-sft-7: dtype: fp16 log_dir: "llama_log_30b" learning_rate: 1e-5 model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500 #model_name: OpenAssistant/llama-30b-super-pretrain output_dir: llama_model_30b deepspeed_config: configs/zero3_config_sft.json weight_decay: 0.0 residual_dropout: 0.0 max_length: 2048 use_flash_attention: true warmup_steps: 20 gradient_checkpointing: true gradient_accumulation_steps: 12 per_device_train_batch_size: 2 per_device_eval_batch_size: 3 eval_steps: 101 save_steps: 485 num_train_epochs: 4 save_total_limit: 3 use_custom_sampler: true sort_by_length: false #save_strategy: steps save_strategy: epoch datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz val_split: 0.05 - vicuna: val_split: 0.05 max_val_set: 800 fraction: 1.0 - dolly15k: val_split: 0.05 max_val_set: 300 - grade_school_math_instructions: val_split: 0.05 - code_alpaca: val_split: 0.05 max_val_set: 250 ``` - **OASST dataset paper:** https://arxiv.org/abs/2304.07327