TheBloke commited on
Commit
f2aadfb
1 Parent(s): 756797d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +601 -0
README.md ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Orca-2-7b
3
+ inference: false
4
+ license: other
5
+ model_creator: Microsoft
6
+ model_name: Orca 2 7B
7
+ model_type: llama
8
+ pipeline_tag: text-generation
9
+ prompt_template: '<|im_start|>system
10
+
11
+ {system_message}<|im_end|>
12
+
13
+ <|im_start|>user
14
+
15
+ {prompt}<|im_end|>
16
+
17
+ <|im_start|>assistant
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - orca
23
+ - orca2
24
+ - microsoft
25
+ ---
26
+ <!-- markdownlint-disable MD041 -->
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Orca 2 7B - AWQ
46
+ - Model creator: [Microsoft](https://huggingface.co/microsoft)
47
+ - Original model: [Orca 2 7B](https://huggingface.co/microsoft/Orca-2-7b)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains AWQ model files for [Microsoft's Orca 2 7B](https://huggingface.co/microsoft/Orca-2-7b).
53
+
54
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
55
+
56
+
57
+ ### About AWQ
58
+
59
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
60
+
61
+ It is supported by:
62
+
63
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
64
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
65
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
66
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
67
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
68
+
69
+ <!-- description end -->
70
+ <!-- repositories-available start -->
71
+ ## Repositories available
72
+
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Orca-2-7B-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Orca-2-7B-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Orca-2-7B-GGUF)
76
+ * [Microsoft's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/microsoft/Orca-2-7b)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: ChatML
81
+
82
+ ```
83
+ <|im_start|>system
84
+ {system_message}<|im_end|>
85
+ <|im_start|>user
86
+ {prompt}<|im_end|>
87
+ <|im_start|>assistant
88
+
89
+ ```
90
+
91
+ <!-- prompt-template end -->
92
+
93
+
94
+ <!-- README_AWQ.md-provided-files start -->
95
+ ## Provided files, and AWQ parameters
96
+
97
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
98
+
99
+ Models are released as sharded safetensors files.
100
+
101
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
102
+ | ------ | ---- | -- | ----------- | ------- | ---- |
103
+ | [main](https://huggingface.co/TheBloke/Orca-2-7B-AWQ/tree/main) | 4 | 128 | [c4](https://huggingface.co/datasets/allenai/c4/viewer/allenai--c4) | 4096 | 3.89 GB
104
+
105
+ <!-- README_AWQ.md-provided-files end -->
106
+
107
+ <!-- README_AWQ.md-text-generation-webui start -->
108
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
109
+
110
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
+
112
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
113
+
114
+ 1. Click the **Model tab**.
115
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Orca-2-7B-AWQ`.
116
+ 3. Click **Download**.
117
+ 4. The model will start downloading. Once it's finished it will say "Done".
118
+ 5. In the top left, click the refresh icon next to **Model**.
119
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Orca-2-7B-AWQ`
120
+ 7. Select **Loader: AutoAWQ**.
121
+ 8. Click Load, and the model will load and is now ready for use.
122
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
123
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
124
+ <!-- README_AWQ.md-text-generation-webui end -->
125
+
126
+ <!-- README_AWQ.md-use-from-vllm start -->
127
+ ## Multi-user inference server: vLLM
128
+
129
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
130
+
131
+ - Please ensure you are using vLLM version 0.2 or later.
132
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
133
+
134
+ For example:
135
+
136
+ ```shell
137
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Orca-2-7B-AWQ --quantization awq --dtype auto
138
+ ```
139
+
140
+ - When using vLLM from Python code, again set `quantization=awq`.
141
+
142
+ For example:
143
+
144
+ ```python
145
+ from vllm import LLM, SamplingParams
146
+
147
+ prompts = [
148
+ "Tell me about AI",
149
+ "Write a story about llamas",
150
+ "What is 291 - 150?",
151
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
152
+ ]
153
+ prompt_template=f'''<|im_start|>system
154
+ {system_message}<|im_end|>
155
+ <|im_start|>user
156
+ {prompt}<|im_end|>
157
+ <|im_start|>assistant
158
+ '''
159
+
160
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
161
+
162
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
163
+
164
+ llm = LLM(model="TheBloke/Orca-2-7B-AWQ", quantization="awq", dtype="auto")
165
+
166
+ outputs = llm.generate(prompts, sampling_params)
167
+
168
+ # Print the outputs.
169
+ for output in outputs:
170
+ prompt = output.prompt
171
+ generated_text = output.outputs[0].text
172
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
173
+ ```
174
+ <!-- README_AWQ.md-use-from-vllm start -->
175
+
176
+ <!-- README_AWQ.md-use-from-tgi start -->
177
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
178
+
179
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
180
+
181
+ Example Docker parameters:
182
+
183
+ ```shell
184
+ --model-id TheBloke/Orca-2-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
185
+ ```
186
+
187
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
188
+
189
+ ```shell
190
+ pip3 install huggingface-hub
191
+ ```
192
+
193
+ ```python
194
+ from huggingface_hub import InferenceClient
195
+
196
+ endpoint_url = "https://your-endpoint-url-here"
197
+
198
+ prompt = "Tell me about AI"
199
+ prompt_template=f'''<|im_start|>system
200
+ {system_message}<|im_end|>
201
+ <|im_start|>user
202
+ {prompt}<|im_end|>
203
+ <|im_start|>assistant
204
+ '''
205
+
206
+ client = InferenceClient(endpoint_url)
207
+ response = client.text_generation(prompt,
208
+ max_new_tokens=128,
209
+ do_sample=True,
210
+ temperature=0.7,
211
+ top_p=0.95,
212
+ top_k=40,
213
+ repetition_penalty=1.1)
214
+
215
+ print(f"Model output: ", response)
216
+ ```
217
+ <!-- README_AWQ.md-use-from-tgi end -->
218
+
219
+ <!-- README_AWQ.md-use-from-python start -->
220
+ ## Inference from Python code using Transformers
221
+
222
+ ### Install the necessary packages
223
+
224
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
225
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
226
+
227
+ ```shell
228
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
229
+ ```
230
+
231
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
232
+
233
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
234
+
235
+ ```shell
236
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
237
+ ```
238
+
239
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
240
+
241
+ ```shell
242
+ pip3 uninstall -y autoawq
243
+ git clone https://github.com/casper-hansen/AutoAWQ
244
+ cd AutoAWQ
245
+ pip3 install .
246
+ ```
247
+
248
+ ### Transformers example code (requires Transformers 4.35.0 and later)
249
+
250
+ ```python
251
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
252
+
253
+ model_name_or_path = "TheBloke/Orca-2-7B-AWQ"
254
+
255
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
256
+ model = AutoModelForCausalLM.from_pretrained(
257
+ model_name_or_path,
258
+ low_cpu_mem_usage=True,
259
+ device_map="cuda:0"
260
+ )
261
+
262
+ # Using the text streamer to stream output one token at a time
263
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
264
+
265
+ prompt = "Tell me about AI"
266
+ prompt_template=f'''<|im_start|>system
267
+ {system_message}<|im_end|>
268
+ <|im_start|>user
269
+ {prompt}<|im_end|>
270
+ <|im_start|>assistant
271
+ '''
272
+
273
+ # Convert prompt to tokens
274
+ tokens = tokenizer(
275
+ prompt_template,
276
+ return_tensors='pt'
277
+ ).input_ids.cuda()
278
+
279
+ generation_params = {
280
+ "do_sample": True,
281
+ "temperature": 0.7,
282
+ "top_p": 0.95,
283
+ "top_k": 40,
284
+ "max_new_tokens": 512,
285
+ "repetition_penalty": 1.1
286
+ }
287
+
288
+ # Generate streamed output, visible one token at a time
289
+ generation_output = model.generate(
290
+ tokens,
291
+ streamer=streamer,
292
+ **generation_params
293
+ )
294
+
295
+ # Generation without a streamer, which will include the prompt in the output
296
+ generation_output = model.generate(
297
+ tokens,
298
+ **generation_params
299
+ )
300
+
301
+ # Get the tokens from the output, decode them, print them
302
+ token_output = generation_output[0]
303
+ text_output = tokenizer.decode(token_output)
304
+ print("model.generate output: ", text_output)
305
+
306
+ # Inference is also possible via Transformers' pipeline
307
+ from transformers import pipeline
308
+
309
+ pipe = pipeline(
310
+ "text-generation",
311
+ model=model,
312
+ tokenizer=tokenizer,
313
+ **generation_params
314
+ )
315
+
316
+ pipe_output = pipe(prompt_template)[0]['generated_text']
317
+ print("pipeline output: ", pipe_output)
318
+
319
+ ```
320
+ <!-- README_AWQ.md-use-from-python end -->
321
+
322
+ <!-- README_AWQ.md-compatibility start -->
323
+ ## Compatibility
324
+
325
+ The files provided are tested to work with:
326
+
327
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
328
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
329
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
330
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
331
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
332
+
333
+ <!-- README_AWQ.md-compatibility end -->
334
+
335
+ <!-- footer start -->
336
+ <!-- 200823 -->
337
+ ## Discord
338
+
339
+ For further support, and discussions on these models and AI in general, join us at:
340
+
341
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
342
+
343
+ ## Thanks, and how to contribute
344
+
345
+ Thanks to the [chirper.ai](https://chirper.ai) team!
346
+
347
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
348
+
349
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
350
+
351
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
352
+
353
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
354
+
355
+ * Patreon: https://patreon.com/TheBlokeAI
356
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
357
+
358
+ **Special thanks to**: Aemon Algiz.
359
+
360
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
361
+
362
+
363
+ Thank you to all my generous patrons and donaters!
364
+
365
+ And thank you again to a16z for their generous grant.
366
+
367
+ <!-- footer end -->
368
+
369
+ # Original model card: Microsoft's Orca 2 7B
370
+
371
+
372
+ # Orca 2
373
+
374
+ <!-- Provide a quick summary of what the model is/does. -->
375
+
376
+ Orca 2 is a helpful assistant that is built for research purposes only and provides a single turn response
377
+ in tasks such as reasoning over user given data, reading comprehension, math problem solving and text summarization.
378
+ The model is designed to excel particularly in reasoning.
379
+
380
+ We open-source Orca 2 to encourage further research on the development, evaluation, and alignment of smaller LMs.
381
+
382
+ ## What is Orca 2’s intended use(s)?
383
+
384
+ + Orca 2 is built for research purposes only.
385
+ + The main purpose is to allow the research community to assess its abilities and to provide a foundation for building better frontier models.
386
+
387
+ ## How was Orca 2 evaluated?
388
+
389
+ + Orca 2 has been evaluated on a large number of tasks ranging from reasoning to grounding and safety. Please refer
390
+ to Section 6 and Appendix in the [Orca 2 paper](https://arxiv.org/pdf/2311.11045.pdf) for details on evaluations.
391
+
392
+ ## Model Details
393
+
394
+ Orca 2 is a finetuned version of LLAMA-2. Orca 2’s training data is a synthetic dataset that was created to enhance the small model’s reasoning abilities.
395
+ All synthetic training data was moderated using the Microsoft Azure content filters. More details about the model can be found in the [Orca 2 paper](https://arxiv.org/pdf/2311.11045.pdf).
396
+
397
+ Please refer to LLaMA-2 technical report for details on the model architecture.
398
+
399
+ ## License
400
+
401
+ Orca 2 is licensed under the [Microsoft Research License](LICENSE).
402
+
403
+ Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
404
+
405
+ ## Bias, Risks, and Limitations
406
+
407
+ Orca 2, built upon the LLaMA 2 model family, retains many of its limitations, as well as the
408
+ common limitations of other large language models or limitation caused by its training
409
+ process, including:
410
+
411
+ **Data Biases**: Large language models, trained on extensive data, can inadvertently carry
412
+ biases present in the source data. Consequently, the models may generate outputs that could
413
+ be potentially biased or unfair.
414
+
415
+ **Lack of Contextual Understanding**: Despite their impressive capabilities in language understanding and generation, these models exhibit limited real-world understanding, resulting
416
+ in potential inaccuracies or nonsensical responses.
417
+
418
+ **Lack of Transparency**: Due to the complexity and size, large language models can act
419
+ as “black boxes”, making it difficult to comprehend the rationale behind specific outputs or
420
+ decisions. We recommend reviewing transparency notes from Azure for more information.
421
+
422
+ **Content Harms**: There are various types of content harms that large language models
423
+ can cause. It is important to be aware of them when using these models, and to take
424
+ actions to prevent them. It is recommended to leverage various content moderation services
425
+ provided by different companies and institutions. On an important note, we hope for better
426
+ regulations and standards from government and technology leaders around content harms
427
+ for AI technologies in future. We value and acknowledge the important role that research
428
+ and open source community can play in this direction.
429
+
430
+ **Hallucination**: It is important to be aware and cautious not to entirely rely on a given
431
+ language model for critical decisions or information that might have deep impact as it is
432
+ not obvious how to prevent these models from fabricating content. Moreover, it is not clear
433
+ whether small models may be more susceptible to hallucination in ungrounded generation
434
+ use cases due to their smaller sizes and hence reduced memorization capacities. This is an
435
+ active research topic and we hope there will be more rigorous measurement, understanding
436
+ and mitigations around this topic.
437
+
438
+ **Potential for Misuse**: Without suitable safeguards, there is a risk that these models could
439
+ be maliciously used for generating disinformation or harmful content.
440
+
441
+ **Data Distribution**: Orca 2’s performance is likely to correlate strongly with the distribution
442
+ of the tuning data. This correlation might limit its accuracy in areas underrepresented in
443
+ the training dataset such as math, coding, and reasoning.
444
+
445
+ **System messages**: Orca 2 demonstrates variance in performance depending on the system
446
+ instructions. Additionally, the stochasticity introduced by the model size may lead to
447
+ generation of non-deterministic responses to different system instructions.
448
+
449
+ **Zero-Shot Settings**: Orca 2 was trained on data that mostly simulate zero-shot settings.
450
+ While the model demonstrate very strong performance in zero-shot settings, it does not show
451
+ the same gains of using few-shot learning compared to other, specially larger, models.
452
+
453
+ **Synthetic data**: As Orca 2 is trained on synthetic data, it could inherit both the advantages
454
+ and shortcomings of the models and methods used for data generation. We posit that Orca
455
+ 2 benefits from the safety measures incorporated during training and safety guardrails (e.g.,
456
+ content filter) within the Azure OpenAI API. However, detailed studies are required for
457
+ better quantification of such risks.
458
+
459
+ This model is solely designed for research settings, and its testing has only been carried
460
+ out in such environments. It should not be used in downstream applications, as additional
461
+ analysis is needed to assess potential harm or bias in the proposed application.
462
+
463
+ ## Getting started with Orca 2
464
+
465
+ **Inference with Hugging Face library**
466
+
467
+ ```python
468
+ import torch
469
+ import transformers
470
+
471
+ if torch.cuda.is_available():
472
+ torch.set_default_device("cuda")
473
+ else:
474
+ torch.set_default_device("cpu")
475
+
476
+ model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/Orca-2-7b", device_map='auto')
477
+
478
+ # https://github.com/huggingface/transformers/issues/27132
479
+ # please use the slow tokenizer since fast and slow tokenizer produces different tokens
480
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
481
+ "microsoft/Orca-2-7b",
482
+ use_fast=False,
483
+ )
484
+
485
+ system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
486
+ user_message = "How can you determine if a restaurant is popular among locals or mainly attracts tourists, and why might this information be useful?"
487
+
488
+ prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
489
+
490
+ inputs = tokenizer(prompt, return_tensors='pt')
491
+ output_ids = model.generate(inputs["input_ids"],)
492
+ answer = tokenizer.batch_decode(output_ids)[0]
493
+
494
+ print(answer)
495
+
496
+ # This example continues showing how to add a second turn message by the user to the conversation
497
+ second_turn_user_message = "Give me a list of the key points of your first answer."
498
+
499
+ # we set add_special_tokens=False because we dont want to automatically add a bos_token between messages
500
+ second_turn_message_in_markup = f"\n<|im_start|>user\n{second_turn_user_message}<|im_end|>\n<|im_start|>assistant"
501
+ second_turn_tokens = tokenizer(second_turn_message_in_markup, return_tensors='pt', add_special_tokens=False)
502
+ second_turn_input = torch.cat([output_ids, second_turn_tokens['input_ids']], dim=1)
503
+
504
+ output_ids_2 = model.generate(second_turn_input,)
505
+ second_turn_answer = tokenizer.batch_decode(output_ids_2)[0]
506
+
507
+ print(second_turn_answer)
508
+ ```
509
+
510
+
511
+ **Safe inference with Azure AI Content Safety**
512
+
513
+ The usage of [Azure AI Content Safety](https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety/) on top of model prediction is strongly encouraged
514
+ and can help preventing some of content harms. Azure AI Content Safety is a content moderation platform
515
+ that uses AI to moderate content. By having Azure AI Content Safety on the output of Orca 2,
516
+ the model output can be moderated by scanning it for different harm categories including sexual content, violence, hate, and
517
+ self-harm with multiple severity levels and multi-lingual detection.
518
+
519
+ ```python
520
+ import os
521
+ import math
522
+ import transformers
523
+ import torch
524
+
525
+ from azure.ai.contentsafety import ContentSafetyClient
526
+ from azure.core.credentials import AzureKeyCredential
527
+ from azure.core.exceptions import HttpResponseError
528
+ from azure.ai.contentsafety.models import AnalyzeTextOptions
529
+
530
+ CONTENT_SAFETY_KEY = os.environ["CONTENT_SAFETY_KEY"]
531
+ CONTENT_SAFETY_ENDPOINT = os.environ["CONTENT_SAFETY_ENDPOINT"]
532
+
533
+ # We use Azure AI Content Safety to filter out any content that reaches "Medium" threshold
534
+ # For more information: https://learn.microsoft.com/en-us/azure/ai-services/content-safety/
535
+ def should_filter_out(input_text, threshold=4):
536
+ # Create an Content Safety client
537
+ client = ContentSafetyClient(CONTENT_SAFETY_ENDPOINT, AzureKeyCredential(CONTENT_SAFETY_KEY))
538
+
539
+ # Construct a request
540
+ request = AnalyzeTextOptions(text=input_text)
541
+
542
+ # Analyze text
543
+ try:
544
+ response = client.analyze_text(request)
545
+ except HttpResponseError as e:
546
+ print("Analyze text failed.")
547
+ if e.error:
548
+ print(f"Error code: {e.error.code}")
549
+ print(f"Error message: {e.error.message}")
550
+ raise
551
+ print(e)
552
+ raise
553
+
554
+ categories = ["hate_result", "self_harm_result", "sexual_result", "violence_result"]
555
+ max_score = -math.inf
556
+ for category in categories:
557
+ max_score = max(max_score, getattr(response, category).severity)
558
+
559
+ return max_score >= threshold
560
+
561
+ model_path = 'microsoft/Orca-2-7b'
562
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
563
+ model = transformers.AutoModelForCausalLM.from_pretrained(model_path)
564
+ model.to(device)
565
+
566
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
567
+ model_path,
568
+ model_max_length=4096,
569
+ padding_side="right",
570
+ use_fast=False,
571
+ add_special_tokens=False,
572
+ )
573
+
574
+ system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
575
+ user_message = "\" \n :You can't just say, \"\"that's crap\"\" and remove it without gaining a consensus. You already know this, based on your block history. —/ \" \nIs the comment obscene? \nOptions : Yes, No."
576
+
577
+ prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
578
+
579
+ inputs = tokenizer(prompt, return_tensors='pt')
580
+ inputs = inputs.to(device)
581
+
582
+ output_ids = model.generate(inputs["input_ids"], max_length=4096, do_sample=False, temperature=0.0, use_cache=True)
583
+ sequence_length = inputs["input_ids"].shape[1]
584
+ new_output_ids = output_ids[:, sequence_length:]
585
+ answers = tokenizer.batch_decode(new_output_ids, skip_special_tokens=True)
586
+ final_output = answers[0] if not should_filter_out(answers[0]) else "[Content Filtered]"
587
+
588
+ print(final_output)
589
+ ```
590
+
591
+ ## Citation
592
+ ```bibtex
593
+ @misc{mitra2023orca,
594
+ title={Orca 2: Teaching Small Language Models How to Reason},
595
+ author={Arindam Mitra and Luciano Del Corro and Shweti Mahajan and Andres Codas and Clarisse Simoes and Sahaj Agrawal and Xuxi Chen and Anastasia Razdaibiedina and Erik Jones and Kriti Aggarwal and Hamid Palangi and Guoqing Zheng and Corby Rosset and Hamed Khanpour and Ahmed Awadallah},
596
+ year={2023},
597
+ eprint={2311.11045},
598
+ archivePrefix={arXiv},
599
+ primaryClass={cs.AI}
600
+ }
601
+ ```