Upload README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
---
|
2 |
datasets:
|
3 |
- PygmalionAI/PIPPA
|
|
|
|
|
|
|
|
|
4 |
inference: false
|
5 |
language:
|
6 |
- en
|
@@ -114,18 +118,18 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
114 |
|
115 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
116 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
117 |
-
| pygmalion-2-7b.Q2_K.gguf | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes |
|
118 |
-
| pygmalion-2-7b.Q3_K_S.gguf | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss |
|
119 |
-
| pygmalion-2-7b.Q3_K_M.gguf | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss |
|
120 |
-
| pygmalion-2-7b.Q3_K_L.gguf | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss |
|
121 |
-
| pygmalion-2-7b.Q4_0.gguf | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
122 |
-
| pygmalion-2-7b.Q4_K_S.gguf | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss |
|
123 |
-
| pygmalion-2-7b.Q4_K_M.gguf | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended |
|
124 |
-
| pygmalion-2-7b.Q5_0.gguf | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
125 |
-
| pygmalion-2-7b.Q5_K_S.gguf | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended |
|
126 |
-
| pygmalion-2-7b.Q5_K_M.gguf | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended |
|
127 |
-
| pygmalion-2-7b.Q6_K.gguf | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss |
|
128 |
-
| pygmalion-2-7b.Q8_0.gguf | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended |
|
129 |
|
130 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
131 |
|
|
|
1 |
---
|
2 |
datasets:
|
3 |
- PygmalionAI/PIPPA
|
4 |
+
- Open-Orca/OpenOrca
|
5 |
+
- Norquinal/claude_multiround_chat_30k
|
6 |
+
- jondurbin/airoboros-gpt4-1.4.1
|
7 |
+
- databricks/databricks-dolly-15k
|
8 |
inference: false
|
9 |
language:
|
10 |
- en
|
|
|
118 |
|
119 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
120 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
121 |
+
| [pygmalion-2-7b.Q2_K.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes |
|
122 |
+
| [pygmalion-2-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss |
|
123 |
+
| [pygmalion-2-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss |
|
124 |
+
| [pygmalion-2-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss |
|
125 |
+
| [pygmalion-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
126 |
+
| [pygmalion-2-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss |
|
127 |
+
| [pygmalion-2-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended |
|
128 |
+
| [pygmalion-2-7b.Q5_0.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
129 |
+
| [pygmalion-2-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended |
|
130 |
+
| [pygmalion-2-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended |
|
131 |
+
| [pygmalion-2-7b.Q6_K.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss |
|
132 |
+
| [pygmalion-2-7b.Q8_0.gguf](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF/blob/main/pygmalion-2-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended |
|
133 |
|
134 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
135 |
|