TheBloke commited on
Commit
a3146da
·
1 Parent(s): 21e9b29

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +428 -0
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SuperAGI/SAM
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ model_creator: SuperAGI
8
+ model_name: SAM
9
+ model_type: mistral
10
+ prompt_template: '[INST] {prompt} [/INST]
11
+
12
+ '
13
+ quantized_by: TheBloke
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+
34
+ # SAM - GPTQ
35
+ - Model creator: [SuperAGI](https://huggingface.co/SuperAGI)
36
+ - Original model: [SAM](https://huggingface.co/SuperAGI/SAM)
37
+
38
+ <!-- description start -->
39
+ # Description
40
+
41
+ This repo contains GPTQ model files for [SuperAGI's SAM](https://huggingface.co/SuperAGI/SAM).
42
+
43
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
+
45
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
46
+
47
+ <!-- description end -->
48
+ <!-- repositories-available start -->
49
+ ## Repositories available
50
+
51
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SAM-AWQ)
52
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SAM-GPTQ)
53
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SAM-GGUF)
54
+ * [SuperAGI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SuperAGI/SAM)
55
+ <!-- repositories-available end -->
56
+
57
+ <!-- prompt-template start -->
58
+ ## Prompt template: Mistral
59
+
60
+ ```
61
+ [INST] {prompt} [/INST]
62
+
63
+ ```
64
+
65
+ <!-- prompt-template end -->
66
+
67
+
68
+
69
+ <!-- README_GPTQ.md-compatible clients start -->
70
+ ## Known compatible clients / servers
71
+
72
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
73
+
74
+ These GPTQ models are known to work in the following inference servers/webuis.
75
+
76
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
77
+ - [KoboldAI United](https://github.com/henk717/koboldai)
78
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
79
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
80
+
81
+ This may not be a complete list; if you know of others, please let me know!
82
+ <!-- README_GPTQ.md-compatible clients end -->
83
+
84
+ <!-- README_GPTQ.md-provided-files start -->
85
+ ## Provided files, and GPTQ parameters
86
+
87
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
88
+
89
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
90
+
91
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
92
+
93
+ <details>
94
+ <summary>Explanation of GPTQ parameters</summary>
95
+
96
+ - Bits: The bit size of the quantised model.
97
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
98
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
99
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
100
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
101
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
102
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
103
+
104
+ </details>
105
+
106
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
107
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
108
+ | [main](https://huggingface.co/TheBloke/SAM-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
109
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/SAM-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
110
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/SAM-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
111
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/SAM-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
112
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/SAM-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
113
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/SAM-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
114
+
115
+ <!-- README_GPTQ.md-provided-files end -->
116
+
117
+ <!-- README_GPTQ.md-download-from-branches start -->
118
+ ## How to download, including from branches
119
+
120
+ ### In text-generation-webui
121
+
122
+ To download from the `main` branch, enter `TheBloke/SAM-GPTQ` in the "Download model" box.
123
+
124
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/SAM-GPTQ:gptq-4bit-32g-actorder_True`
125
+
126
+ ### From the command line
127
+
128
+ I recommend using the `huggingface-hub` Python library:
129
+
130
+ ```shell
131
+ pip3 install huggingface-hub
132
+ ```
133
+
134
+ To download the `main` branch to a folder called `SAM-GPTQ`:
135
+
136
+ ```shell
137
+ mkdir SAM-GPTQ
138
+ huggingface-cli download TheBloke/SAM-GPTQ --local-dir SAM-GPTQ --local-dir-use-symlinks False
139
+ ```
140
+
141
+ To download from a different branch, add the `--revision` parameter:
142
+
143
+ ```shell
144
+ mkdir SAM-GPTQ
145
+ huggingface-cli download TheBloke/SAM-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir SAM-GPTQ --local-dir-use-symlinks False
146
+ ```
147
+
148
+ <details>
149
+ <summary>More advanced huggingface-cli download usage</summary>
150
+
151
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
152
+
153
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
154
+
155
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
156
+
157
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
158
+
159
+ ```shell
160
+ pip3 install hf_transfer
161
+ ```
162
+
163
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
164
+
165
+ ```shell
166
+ mkdir SAM-GPTQ
167
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/SAM-GPTQ --local-dir SAM-GPTQ --local-dir-use-symlinks False
168
+ ```
169
+
170
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
171
+ </details>
172
+
173
+ ### With `git` (**not** recommended)
174
+
175
+ To clone a specific branch with `git`, use a command like this:
176
+
177
+ ```shell
178
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/SAM-GPTQ
179
+ ```
180
+
181
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
182
+
183
+ <!-- README_GPTQ.md-download-from-branches end -->
184
+ <!-- README_GPTQ.md-text-generation-webui start -->
185
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
186
+
187
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
188
+
189
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
190
+
191
+ 1. Click the **Model tab**.
192
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/SAM-GPTQ`.
193
+
194
+ - To download from a specific branch, enter for example `TheBloke/SAM-GPTQ:gptq-4bit-32g-actorder_True`
195
+ - see Provided Files above for the list of branches for each option.
196
+
197
+ 3. Click **Download**.
198
+ 4. The model will start downloading. Once it's finished it will say "Done".
199
+ 5. In the top left, click the refresh icon next to **Model**.
200
+ 6. In the **Model** dropdown, choose the model you just downloaded: `SAM-GPTQ`
201
+ 7. The model will automatically load, and is now ready for use!
202
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
203
+
204
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
205
+
206
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
207
+
208
+ <!-- README_GPTQ.md-text-generation-webui end -->
209
+
210
+ <!-- README_GPTQ.md-use-from-tgi start -->
211
+ ## Serving this model from Text Generation Inference (TGI)
212
+
213
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
214
+
215
+ Example Docker parameters:
216
+
217
+ ```shell
218
+ --model-id TheBloke/SAM-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
219
+ ```
220
+
221
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
222
+
223
+ ```shell
224
+ pip3 install huggingface-hub
225
+ ```
226
+
227
+ ```python
228
+ from huggingface_hub import InferenceClient
229
+
230
+ endpoint_url = "https://your-endpoint-url-here"
231
+
232
+ prompt = "Tell me about AI"
233
+ prompt_template=f'''[INST] {prompt} [/INST]
234
+ '''
235
+
236
+ client = InferenceClient(endpoint_url)
237
+ response = client.text_generation(prompt,
238
+ max_new_tokens=128,
239
+ do_sample=True,
240
+ temperature=0.7,
241
+ top_p=0.95,
242
+ top_k=40,
243
+ repetition_penalty=1.1)
244
+
245
+ print(f"Model output: {response}")
246
+ ```
247
+ <!-- README_GPTQ.md-use-from-tgi end -->
248
+ <!-- README_GPTQ.md-use-from-python start -->
249
+ ## Python code example: inference from this GPTQ model
250
+
251
+ ### Install the necessary packages
252
+
253
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
254
+
255
+ ```shell
256
+ pip3 install --upgrade transformers optimum
257
+ # If using PyTorch 2.1 + CUDA 12.x:
258
+ pip3 install --upgrade auto-gptq
259
+ # or, if using PyTorch 2.1 + CUDA 11.x:
260
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
261
+ ```
262
+
263
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
264
+
265
+ ```shell
266
+ pip3 uninstall -y auto-gptq
267
+ git clone https://github.com/PanQiWei/AutoGPTQ
268
+ cd AutoGPTQ
269
+ git checkout v0.5.1
270
+ pip3 install .
271
+ ```
272
+
273
+ ### Example Python code
274
+
275
+ ```python
276
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
277
+
278
+ model_name_or_path = "TheBloke/SAM-GPTQ"
279
+ # To use a different branch, change revision
280
+ # For example: revision="gptq-4bit-32g-actorder_True"
281
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
282
+ device_map="auto",
283
+ trust_remote_code=False,
284
+ revision="main")
285
+
286
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
287
+
288
+ prompt = "Write a story about llamas"
289
+ system_message = "You are a story writing assistant"
290
+ prompt_template=f'''[INST] {prompt} [/INST]
291
+ '''
292
+
293
+ print("\n\n*** Generate:")
294
+
295
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
296
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
297
+ print(tokenizer.decode(output[0]))
298
+
299
+ # Inference can also be done using transformers' pipeline
300
+
301
+ print("*** Pipeline:")
302
+ pipe = pipeline(
303
+ "text-generation",
304
+ model=model,
305
+ tokenizer=tokenizer,
306
+ max_new_tokens=512,
307
+ do_sample=True,
308
+ temperature=0.7,
309
+ top_p=0.95,
310
+ top_k=40,
311
+ repetition_penalty=1.1
312
+ )
313
+
314
+ print(pipe(prompt_template)[0]['generated_text'])
315
+ ```
316
+ <!-- README_GPTQ.md-use-from-python end -->
317
+
318
+ <!-- README_GPTQ.md-compatibility start -->
319
+ ## Compatibility
320
+
321
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
322
+
323
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
324
+
325
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
326
+ <!-- README_GPTQ.md-compatibility end -->
327
+
328
+ <!-- footer start -->
329
+ <!-- 200823 -->
330
+ ## Discord
331
+
332
+ For further support, and discussions on these models and AI in general, join us at:
333
+
334
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
335
+
336
+ ## Thanks, and how to contribute
337
+
338
+ Thanks to the [chirper.ai](https://chirper.ai) team!
339
+
340
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
341
+
342
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
343
+
344
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
345
+
346
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
347
+
348
+ * Patreon: https://patreon.com/TheBlokeAI
349
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
350
+
351
+ **Special thanks to**: Aemon Algiz.
352
+
353
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
354
+
355
+
356
+ Thank you to all my generous patrons and donaters!
357
+
358
+ And thank you again to a16z for their generous grant.
359
+
360
+ <!-- footer end -->
361
+
362
+ # Original model card: SuperAGI's SAM
363
+
364
+ # Model Card
365
+ SAM (Small Agentic Model), a 7B model that demonstrates impressive reasoning abilities despite its smaller size. SAM-7B has outperformed existing SoTA models on various reasoning benchmarks, including GSM8k and ARC-C.
366
+
367
+ For full details of this model please read our [release blog post](https://superagi.com/introducing-sam-small-agentic-model/).
368
+
369
+ # Key Contributions
370
+ - SAM-7B outperforms GPT 3.5, Orca, and several other 70B models on multiple reasoning benchmarks, including ARC-C and GSM8k.
371
+ - Interestingly, despite being trained on a 97% smaller dataset, SAM-7B surpasses Orca-13B on GSM8k.
372
+ - All responses in our fine-tuning dataset are generated by open-source models without any assistance from state-of-the-art models like GPT-3.5 or GPT-4.
373
+
374
+ ## Training
375
+ - Trained by: SuperAGI Team
376
+ - Hardware: NVIDIA 6 x H100 SxM (80GB)
377
+ - Model used: Mistral 7B
378
+ - Duration of finetuning: 4 hours
379
+ - Number of epochs: 1
380
+ - Batch size: 16
381
+ - Learning Rate: 2e-5
382
+ - Warmup Ratio: 0.1
383
+ - Optmizer: AdamW
384
+ - Scheduler: Cosine
385
+
386
+ ## Example Prompt
387
+
388
+ The template used to build a prompt for the Instruct model is defined as follows:
389
+ ```
390
+ <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
391
+ ```
392
+ Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
393
+
394
+
395
+ ## Evaluation
396
+
397
+ These benchmarks show that our model has improved reasoning as compared to orca 2-7b, orca 2-13b and GPT-3.5.
398
+ Despite being smaller in size, we show better multi-hop reasoning, as shown below:
399
+ <img src = "https://superagi.com/wp-content/uploads/2023/12/image-932.png" alt="Reasoning Benchmark Performance" width="700">
400
+
401
+ Note: Temperature=0.3 is the suggested for optimal performance
402
+
403
+ ## Run the model
404
+
405
+ ```python
406
+ from transformers import AutoModelForCausalLM, AutoTokenizer
407
+
408
+ model_id = "SuperAGI/SAM"
409
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
410
+
411
+ model = AutoModelForCausalLM.from_pretrained(model_id)
412
+
413
+ text = "Can elephants fly?"
414
+ inputs = tokenizer(text, return_tensors="pt")
415
+
416
+ outputs = model.generate(**inputs, max_new_tokens=200)
417
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
418
+ ```
419
+
420
+
421
+ ## Limitations
422
+
423
+ SAM is a demonstration that better reasoning can be induced using less but high-quality data generated using OpenSource LLMs.
424
+ The model is not suitable for conversations and simple Q&A, it performs better in task breakdown and reasoning only.
425
+ It does not have any moderation mechanisms. Therefore, the model is not suitable for production usage as it doesn't have guardrails for toxicity, societal bias, and language limitations. We would love to collaborate with the community to build safer and better models.
426
+
427
+ ## The SuperAGI AI Team
428
+ Anmol Gautam, Arkajit Datta, Rajat Chawla, Ayush Vatsal, Sukrit Chatterjee, Adarsh Jha, Abhijeet Sinha, Rakesh Krishna, Adarsh Deep, Ishaan Bhola, Mukunda NS, Nishant Gaurav.