TheBloke commited on
Commit
fd1621e
·
1 Parent(s): 6638a09

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +489 -0
README.md ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct
3
+ datasets:
4
+ - argilla/distilabel-math-preference-dpo
5
+ inference: false
6
+ language:
7
+ - en
8
+ - de
9
+ library_name: transformers
10
+ license: cc-by-nc-4.0
11
+ model_creator: VAGO solutions
12
+ model_name: SauerkrautLM SOLAR Instruct
13
+ model_type: solar
14
+ pipeline_tag: text-generation
15
+ prompt_template: '### User:
16
+
17
+ {prompt}
18
+
19
+
20
+ ### Assistant:
21
+
22
+ '
23
+ quantized_by: TheBloke
24
+ tags:
25
+ - finetune
26
+ - dpo
27
+ - Instruct
28
+ - augmentation
29
+ - german
30
+ ---
31
+ <!-- markdownlint-disable MD041 -->
32
+
33
+ <!-- header start -->
34
+ <!-- 200823 -->
35
+ <div style="width: auto; margin-left: auto; margin-right: auto">
36
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
37
+ </div>
38
+ <div style="display: flex; justify-content: space-between; width: 100%;">
39
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
41
+ </div>
42
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
44
+ </div>
45
+ </div>
46
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
47
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
+ <!-- header end -->
49
+
50
+ # SauerkrautLM SOLAR Instruct - AWQ
51
+ - Model creator: [VAGO solutions](https://huggingface.co/VAGOsolutions)
52
+ - Original model: [SauerkrautLM SOLAR Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct)
53
+
54
+ <!-- description start -->
55
+ ## Description
56
+
57
+ This repo contains AWQ model files for [VAGO solutions's SauerkrautLM SOLAR Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct).
58
+
59
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
60
+
61
+
62
+ ### About AWQ
63
+
64
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
65
+
66
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
67
+
68
+ It is supported by:
69
+
70
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
71
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
72
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
73
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
74
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
75
+
76
+ <!-- description end -->
77
+ <!-- repositories-available start -->
78
+ ## Repositories available
79
+
80
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ)
81
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SauerkrautLM-SOLAR-Instruct-GPTQ)
82
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SauerkrautLM-SOLAR-Instruct-GGUF)
83
+ * [VAGO solutions's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct)
84
+ <!-- repositories-available end -->
85
+
86
+ <!-- prompt-template start -->
87
+ ## Prompt template: User-Assistant-Newlines
88
+
89
+ ```
90
+ ### User:
91
+ {prompt}
92
+
93
+ ### Assistant:
94
+
95
+ ```
96
+
97
+ <!-- prompt-template end -->
98
+
99
+
100
+ <!-- README_AWQ.md-provided-files start -->
101
+ ## Provided files, and AWQ parameters
102
+
103
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
104
+
105
+ Models are released as sharded safetensors files.
106
+
107
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
108
+ | ------ | ---- | -- | ----------- | ------- | ---- |
109
+ | [main](https://huggingface.co/TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 5.96 GB
110
+
111
+ <!-- README_AWQ.md-provided-files end -->
112
+
113
+ <!-- README_AWQ.md-text-generation-webui start -->
114
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
115
+
116
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
+
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
+
120
+ 1. Click the **Model tab**.
121
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ`.
122
+ 3. Click **Download**.
123
+ 4. The model will start downloading. Once it's finished it will say "Done".
124
+ 5. In the top left, click the refresh icon next to **Model**.
125
+ 6. In the **Model** dropdown, choose the model you just downloaded: `SauerkrautLM-SOLAR-Instruct-AWQ`
126
+ 7. Select **Loader: AutoAWQ**.
127
+ 8. Click Load, and the model will load and is now ready for use.
128
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
129
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
130
+ <!-- README_AWQ.md-text-generation-webui end -->
131
+
132
+ <!-- README_AWQ.md-use-from-vllm start -->
133
+ ## Multi-user inference server: vLLM
134
+
135
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
136
+
137
+ - Please ensure you are using vLLM version 0.2 or later.
138
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
139
+
140
+ For example:
141
+
142
+ ```shell
143
+ python3 -m vllm.entrypoints.api_server --model TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ --quantization awq --dtype auto
144
+ ```
145
+
146
+ - When using vLLM from Python code, again set `quantization=awq`.
147
+
148
+ For example:
149
+
150
+ ```python
151
+ from vllm import LLM, SamplingParams
152
+
153
+ prompts = [
154
+ "Tell me about AI",
155
+ "Write a story about llamas",
156
+ "What is 291 - 150?",
157
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
158
+ ]
159
+ prompt_template=f'''### User:
160
+ {prompt}
161
+
162
+ ### Assistant:
163
+ '''
164
+
165
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
166
+
167
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
168
+
169
+ llm = LLM(model="TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ", quantization="awq", dtype="auto")
170
+
171
+ outputs = llm.generate(prompts, sampling_params)
172
+
173
+ # Print the outputs.
174
+ for output in outputs:
175
+ prompt = output.prompt
176
+ generated_text = output.outputs[0].text
177
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
178
+ ```
179
+ <!-- README_AWQ.md-use-from-vllm start -->
180
+
181
+ <!-- README_AWQ.md-use-from-tgi start -->
182
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
183
+
184
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
185
+
186
+ Example Docker parameters:
187
+
188
+ ```shell
189
+ --model-id TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
190
+ ```
191
+
192
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
193
+
194
+ ```shell
195
+ pip3 install huggingface-hub
196
+ ```
197
+
198
+ ```python
199
+ from huggingface_hub import InferenceClient
200
+
201
+ endpoint_url = "https://your-endpoint-url-here"
202
+
203
+ prompt = "Tell me about AI"
204
+ prompt_template=f'''### User:
205
+ {prompt}
206
+
207
+ ### Assistant:
208
+ '''
209
+
210
+ client = InferenceClient(endpoint_url)
211
+ response = client.text_generation(prompt,
212
+ max_new_tokens=128,
213
+ do_sample=True,
214
+ temperature=0.7,
215
+ top_p=0.95,
216
+ top_k=40,
217
+ repetition_penalty=1.1)
218
+
219
+ print(f"Model output: ", response)
220
+ ```
221
+ <!-- README_AWQ.md-use-from-tgi end -->
222
+
223
+ <!-- README_AWQ.md-use-from-python start -->
224
+ ## Inference from Python code using Transformers
225
+
226
+ ### Install the necessary packages
227
+
228
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
229
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
230
+
231
+ ```shell
232
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
233
+ ```
234
+
235
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
236
+
237
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
238
+
239
+ ```shell
240
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
241
+ ```
242
+
243
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
244
+
245
+ ```shell
246
+ pip3 uninstall -y autoawq
247
+ git clone https://github.com/casper-hansen/AutoAWQ
248
+ cd AutoAWQ
249
+ pip3 install .
250
+ ```
251
+
252
+ ### Transformers example code (requires Transformers 4.35.0 and later)
253
+
254
+ ```python
255
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
256
+
257
+ model_name_or_path = "TheBloke/SauerkrautLM-SOLAR-Instruct-AWQ"
258
+
259
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
260
+ model = AutoModelForCausalLM.from_pretrained(
261
+ model_name_or_path,
262
+ low_cpu_mem_usage=True,
263
+ device_map="cuda:0"
264
+ )
265
+
266
+ # Using the text streamer to stream output one token at a time
267
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
268
+
269
+ prompt = "Tell me about AI"
270
+ prompt_template=f'''### User:
271
+ {prompt}
272
+
273
+ ### Assistant:
274
+ '''
275
+
276
+ # Convert prompt to tokens
277
+ tokens = tokenizer(
278
+ prompt_template,
279
+ return_tensors='pt'
280
+ ).input_ids.cuda()
281
+
282
+ generation_params = {
283
+ "do_sample": True,
284
+ "temperature": 0.7,
285
+ "top_p": 0.95,
286
+ "top_k": 40,
287
+ "max_new_tokens": 512,
288
+ "repetition_penalty": 1.1
289
+ }
290
+
291
+ # Generate streamed output, visible one token at a time
292
+ generation_output = model.generate(
293
+ tokens,
294
+ streamer=streamer,
295
+ **generation_params
296
+ )
297
+
298
+ # Generation without a streamer, which will include the prompt in the output
299
+ generation_output = model.generate(
300
+ tokens,
301
+ **generation_params
302
+ )
303
+
304
+ # Get the tokens from the output, decode them, print them
305
+ token_output = generation_output[0]
306
+ text_output = tokenizer.decode(token_output)
307
+ print("model.generate output: ", text_output)
308
+
309
+ # Inference is also possible via Transformers' pipeline
310
+ from transformers import pipeline
311
+
312
+ pipe = pipeline(
313
+ "text-generation",
314
+ model=model,
315
+ tokenizer=tokenizer,
316
+ **generation_params
317
+ )
318
+
319
+ pipe_output = pipe(prompt_template)[0]['generated_text']
320
+ print("pipeline output: ", pipe_output)
321
+
322
+ ```
323
+ <!-- README_AWQ.md-use-from-python end -->
324
+
325
+ <!-- README_AWQ.md-compatibility start -->
326
+ ## Compatibility
327
+
328
+ The files provided are tested to work with:
329
+
330
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
331
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
332
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
333
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
334
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
335
+
336
+ <!-- README_AWQ.md-compatibility end -->
337
+
338
+ <!-- footer start -->
339
+ <!-- 200823 -->
340
+ ## Discord
341
+
342
+ For further support, and discussions on these models and AI in general, join us at:
343
+
344
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
345
+
346
+ ## Thanks, and how to contribute
347
+
348
+ Thanks to the [chirper.ai](https://chirper.ai) team!
349
+
350
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
351
+
352
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
353
+
354
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
355
+
356
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
357
+
358
+ * Patreon: https://patreon.com/TheBlokeAI
359
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
360
+
361
+ **Special thanks to**: Aemon Algiz.
362
+
363
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
364
+
365
+
366
+ Thank you to all my generous patrons and donaters!
367
+
368
+ And thank you again to a16z for their generous grant.
369
+
370
+ <!-- footer end -->
371
+
372
+ # Original model card: VAGO solutions's SauerkrautLM SOLAR Instruct
373
+
374
+
375
+ ![SauerkrautLM](https://vago-solutions.de/wp-content/uploads/2023/12/sauerkrautlm-solar.png "SauerkrautLM-SOLAR-Instruct")
376
+ ## VAGO solutions SauerkrautLM-SOLAR-Instruct
377
+ Introducing **SauerkrautLM-SOLAR-Instruct** – our Sauerkraut version of the powerful [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) !
378
+ Aligned with **DPO**
379
+
380
+ # Table of Contents
381
+ 1. [Overview of all SauerkrautLM-SOLAR-Instruct models](#all-sauerkrautlm-solar-instruct-models)
382
+ 2. [Model Details](#model-details)
383
+ - [Prompt template](#prompt-template)
384
+ - [Training Dataset](#training-dataset)
385
+ - [Data Contamination Test](#data-contamination-test-results)
386
+ 3. [Evaluation](#evaluation)
387
+ 5. [Disclaimer](#disclaimer)
388
+ 6. [Contact](#contact)
389
+ 7. [Collaborations](#collaborations)
390
+ 8. [Acknowledgement](#acknowledgement)
391
+
392
+
393
+ ## All SauerkrautLM-SOLAR-Instruct Models
394
+
395
+ | Model | HF | GPTQ | GGUF | AWQ |
396
+ |-------|-------|-------|-------|-------|
397
+ | SauerkrautLM-SOLAR-Instruct | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct/) | coming soon | coming soon | coming soon |
398
+
399
+ ## Model Details
400
+ **SauerkrautLM-SOLAR-Instruct**
401
+ - **Model Type:** SauerkrautLM-SOLAR-Instruct is a finetuned Model based on [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
402
+ - **Language(s):** English, German
403
+ - **License:** cc-by-nc-4.0
404
+ - **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:[email protected])
405
+
406
+ ### Training Dataset:
407
+
408
+ SauerkrautLM-SOLAR-Instruct was trained with mix of German data augmentation and translated data.
409
+ Aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset
410
+ as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).**
411
+ We found, that only a simple translation of training data can lead to unnatural German phrasings.
412
+ Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.
413
+
414
+ We improved the German language skills on this model. Nevertheless, certain formulations may occur that are not entirely correct.
415
+
416
+
417
+
418
+
419
+
420
+ ### Data Contamination Test Results
421
+
422
+ Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in.
423
+ We checked our SauerkrautLM-DPO dataset with a special test [1] on this model as target model and upstage/SOLAR-10.7B-Instruct-v1.0 as reference model.
424
+ The HuggingFace team used the same methods [2, 3].
425
+
426
+ Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination.
427
+
428
+ *The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.*
429
+
430
+ | Dataset | ARC | MMLU | TruthfulQA | GSM8K |
431
+ |------------------------------|-------|-------|-------|-------|
432
+ | **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 |
433
+
434
+ [1] https://github.com/swj0419/detect-pretrain-code-contamination
435
+
436
+ [2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06
437
+
438
+ [3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230
439
+
440
+ ### Prompt Template:
441
+ ```
442
+ ### User:
443
+ Hallo, wie geht es dir?
444
+
445
+ ### Assistant:
446
+ Hallo! Es freut mich, dass du mit mir kommunizierst. Ich bin hier, um zu helfen und deine Anfragen zu erfüllen. Du fragst, wie ich mich fühle. Als künstliche Intelligenz habe ich keine eigentlichen Emotionen im Sinne eines Menschen, aber ich funktioniere optimal und bin bereit, Dienste anzubieten.
447
+ Wie geht es dir momentan? Können wir zusammen etwas interessantes oder hilfreiches erledigen?
448
+
449
+ ```
450
+ *Prompt Example on Temp 0.5
451
+
452
+ ```
453
+ ### User:
454
+ Hello, how are you?
455
+
456
+ ### Assistant:
457
+ Hi there! I am an AI language model, so I don't have personal feelings or emotions in the traditional sense. However, I can assure you that my systems and processes are functioning well at this moment, allowing me to provide helpful responses for your queries.
458
+ How may I assist you today?
459
+
460
+ ```
461
+ *Prompt Example on Temp 0.5
462
+
463
+ ## Evaluation
464
+
465
+
466
+
467
+ | Metric | Value |
468
+ |-----------------------|---------------------------|
469
+ | Avg. | 74.21 |
470
+ | ARC (25-shot) | 70.82 |
471
+ | HellaSwag (10-shot) | 88.63 |
472
+ | MMLU (5-shot) | 66.2|
473
+ | TruthfulQA (0-shot) | 71.95 |
474
+ | Winogrande (5-shot) | 83.5 |
475
+ | GSM8K (5-shot) | 64.14 |
476
+
477
+ ## Disclaimer
478
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
479
+ However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
480
+ Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
481
+  
482
+ ## Contact
483
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:[email protected]). We are also grateful for your feedback and suggestions.
484
+  
485
+ ## Collaborations
486
+ We are also keenly seeking support and investment for our startup, VAGO solutions, where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.
487
+
488
+ ## Acknowledgement
489
+ Many thanks to [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to [upstage](https://huggingface.co/upstage) for providing the open source community with their latest technology!