TheBloke commited on
Commit
417aad4
·
1 Parent(s): 64cf513

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +451 -0
README.md ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SciPhi/Sensei-7B-V1
3
+ inference: false
4
+ model_creator: SciPhi-AI
5
+ model_name: Sensei 7B v1
6
+ model_type: mistral
7
+ prompt_template: "### Instruction: \nYour task is to perform retrieval augmented generation\
8
+ \ (RAG) over the given query and search results. Return your answer in a json format\
9
+ \ that includes a summary of the search results and a list of related queries. \n\
10
+ \nQuery:\n{prompt}\n\\n\\n\nSearch Results:\n{{context}}\n\\n\\n\nQuery:\n{prompt}\n\
11
+ \n### Response:\n{{\"summary\":\n"
12
+ quantized_by: TheBloke
13
+ ---
14
+ <!-- markdownlint-disable MD041 -->
15
+
16
+ <!-- header start -->
17
+ <!-- 200823 -->
18
+ <div style="width: auto; margin-left: auto; margin-right: auto">
19
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
20
+ </div>
21
+ <div style="display: flex; justify-content: space-between; width: 100%;">
22
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
23
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
24
+ </div>
25
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
27
+ </div>
28
+ </div>
29
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
30
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
+ <!-- header end -->
32
+
33
+ # Sensei 7B v1 - AWQ
34
+ - Model creator: [SciPhi-AI](https://huggingface.co/SciPhi)
35
+ - Original model: [Sensei 7B v1](https://huggingface.co/SciPhi/Sensei-7B-V1)
36
+
37
+ <!-- description start -->
38
+ ## Description
39
+
40
+ This repo contains AWQ model files for [SciPhi-AI's Sensei 7B v1](https://huggingface.co/SciPhi/Sensei-7B-V1).
41
+
42
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
43
+
44
+
45
+ ### About AWQ
46
+
47
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
48
+
49
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
50
+
51
+ It is supported by:
52
+
53
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
54
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
55
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
56
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
57
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
58
+
59
+ <!-- description end -->
60
+ <!-- repositories-available start -->
61
+ ## Repositories available
62
+
63
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Sensei-7B-V1-AWQ)
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Sensei-7B-V1-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Sensei-7B-V1-GGUF)
66
+ * [SciPhi-AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SciPhi/Sensei-7B-V1)
67
+ <!-- repositories-available end -->
68
+
69
+ <!-- prompt-template start -->
70
+ ## Prompt template: Sensei-RAG
71
+
72
+ ```
73
+ ### Instruction:
74
+ Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries.
75
+
76
+ Query:
77
+ {prompt}
78
+ \n\n
79
+ Search Results:
80
+ {{context}}
81
+ \n\n
82
+ Query:
83
+ {prompt}
84
+
85
+ ### Response:
86
+ {{"summary":
87
+
88
+ ```
89
+
90
+ <!-- prompt-template end -->
91
+
92
+
93
+ <!-- README_AWQ.md-provided-files start -->
94
+ ## Provided files, and AWQ parameters
95
+
96
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
97
+
98
+ Models are released as sharded safetensors files.
99
+
100
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
101
+ | ------ | ---- | -- | ----------- | ------- | ---- |
102
+ | [main](https://huggingface.co/TheBloke/Sensei-7B-V1-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
103
+
104
+ <!-- README_AWQ.md-provided-files end -->
105
+
106
+ <!-- README_AWQ.md-text-generation-webui start -->
107
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
108
+
109
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
110
+
111
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
112
+
113
+ 1. Click the **Model tab**.
114
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Sensei-7B-V1-AWQ`.
115
+ 3. Click **Download**.
116
+ 4. The model will start downloading. Once it's finished it will say "Done".
117
+ 5. In the top left, click the refresh icon next to **Model**.
118
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Sensei-7B-V1-AWQ`
119
+ 7. Select **Loader: AutoAWQ**.
120
+ 8. Click Load, and the model will load and is now ready for use.
121
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
122
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
123
+ <!-- README_AWQ.md-text-generation-webui end -->
124
+
125
+ <!-- README_AWQ.md-use-from-vllm start -->
126
+ ## Multi-user inference server: vLLM
127
+
128
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
129
+
130
+ - Please ensure you are using vLLM version 0.2 or later.
131
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
132
+
133
+ For example:
134
+
135
+ ```shell
136
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Sensei-7B-V1-AWQ --quantization awq --dtype auto
137
+ ```
138
+
139
+ - When using vLLM from Python code, again set `quantization=awq`.
140
+
141
+ For example:
142
+
143
+ ```python
144
+ from vllm import LLM, SamplingParams
145
+
146
+ prompts = [
147
+ "Tell me about AI",
148
+ "Write a story about llamas",
149
+ "What is 291 - 150?",
150
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
151
+ ]
152
+ prompt_template=f'''### Instruction:
153
+ Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries.
154
+
155
+ Query:
156
+ {prompt}
157
+ \n\n
158
+ Search Results:
159
+ {{context}}
160
+ \n\n
161
+ Query:
162
+ {prompt}
163
+
164
+ ### Response:
165
+ {{"summary":
166
+ '''
167
+
168
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
169
+
170
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
171
+
172
+ llm = LLM(model="TheBloke/Sensei-7B-V1-AWQ", quantization="awq", dtype="auto")
173
+
174
+ outputs = llm.generate(prompts, sampling_params)
175
+
176
+ # Print the outputs.
177
+ for output in outputs:
178
+ prompt = output.prompt
179
+ generated_text = output.outputs[0].text
180
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
181
+ ```
182
+ <!-- README_AWQ.md-use-from-vllm start -->
183
+
184
+ <!-- README_AWQ.md-use-from-tgi start -->
185
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
186
+
187
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
188
+
189
+ Example Docker parameters:
190
+
191
+ ```shell
192
+ --model-id TheBloke/Sensei-7B-V1-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
193
+ ```
194
+
195
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
196
+
197
+ ```shell
198
+ pip3 install huggingface-hub
199
+ ```
200
+
201
+ ```python
202
+ from huggingface_hub import InferenceClient
203
+
204
+ endpoint_url = "https://your-endpoint-url-here"
205
+
206
+ prompt = "Tell me about AI"
207
+ prompt_template=f'''### Instruction:
208
+ Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries.
209
+
210
+ Query:
211
+ {prompt}
212
+ \n\n
213
+ Search Results:
214
+ {{context}}
215
+ \n\n
216
+ Query:
217
+ {prompt}
218
+
219
+ ### Response:
220
+ {{"summary":
221
+ '''
222
+
223
+ client = InferenceClient(endpoint_url)
224
+ response = client.text_generation(prompt,
225
+ max_new_tokens=128,
226
+ do_sample=True,
227
+ temperature=0.7,
228
+ top_p=0.95,
229
+ top_k=40,
230
+ repetition_penalty=1.1)
231
+
232
+ print(f"Model output: ", response)
233
+ ```
234
+ <!-- README_AWQ.md-use-from-tgi end -->
235
+
236
+ <!-- README_AWQ.md-use-from-python start -->
237
+ ## Inference from Python code using Transformers
238
+
239
+ ### Install the necessary packages
240
+
241
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
242
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
243
+
244
+ ```shell
245
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
246
+ ```
247
+
248
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
249
+
250
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
251
+
252
+ ```shell
253
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
254
+ ```
255
+
256
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
257
+
258
+ ```shell
259
+ pip3 uninstall -y autoawq
260
+ git clone https://github.com/casper-hansen/AutoAWQ
261
+ cd AutoAWQ
262
+ pip3 install .
263
+ ```
264
+
265
+ ### Transformers example code (requires Transformers 4.35.0 and later)
266
+
267
+ ```python
268
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
269
+
270
+ model_name_or_path = "TheBloke/Sensei-7B-V1-AWQ"
271
+
272
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
273
+ model = AutoModelForCausalLM.from_pretrained(
274
+ model_name_or_path,
275
+ low_cpu_mem_usage=True,
276
+ device_map="cuda:0"
277
+ )
278
+
279
+ # Using the text streamer to stream output one token at a time
280
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
281
+
282
+ prompt = "Tell me about AI"
283
+ prompt_template=f'''### Instruction:
284
+ Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries.
285
+
286
+ Query:
287
+ {prompt}
288
+ \n\n
289
+ Search Results:
290
+ {{context}}
291
+ \n\n
292
+ Query:
293
+ {prompt}
294
+
295
+ ### Response:
296
+ {{"summary":
297
+ '''
298
+
299
+ # Convert prompt to tokens
300
+ tokens = tokenizer(
301
+ prompt_template,
302
+ return_tensors='pt'
303
+ ).input_ids.cuda()
304
+
305
+ generation_params = {
306
+ "do_sample": True,
307
+ "temperature": 0.7,
308
+ "top_p": 0.95,
309
+ "top_k": 40,
310
+ "max_new_tokens": 512,
311
+ "repetition_penalty": 1.1
312
+ }
313
+
314
+ # Generate streamed output, visible one token at a time
315
+ generation_output = model.generate(
316
+ tokens,
317
+ streamer=streamer,
318
+ **generation_params
319
+ )
320
+
321
+ # Generation without a streamer, which will include the prompt in the output
322
+ generation_output = model.generate(
323
+ tokens,
324
+ **generation_params
325
+ )
326
+
327
+ # Get the tokens from the output, decode them, print them
328
+ token_output = generation_output[0]
329
+ text_output = tokenizer.decode(token_output)
330
+ print("model.generate output: ", text_output)
331
+
332
+ # Inference is also possible via Transformers' pipeline
333
+ from transformers import pipeline
334
+
335
+ pipe = pipeline(
336
+ "text-generation",
337
+ model=model,
338
+ tokenizer=tokenizer,
339
+ **generation_params
340
+ )
341
+
342
+ pipe_output = pipe(prompt_template)[0]['generated_text']
343
+ print("pipeline output: ", pipe_output)
344
+
345
+ ```
346
+ <!-- README_AWQ.md-use-from-python end -->
347
+
348
+ <!-- README_AWQ.md-compatibility start -->
349
+ ## Compatibility
350
+
351
+ The files provided are tested to work with:
352
+
353
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
354
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
355
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
356
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
357
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
358
+
359
+ <!-- README_AWQ.md-compatibility end -->
360
+
361
+ <!-- footer start -->
362
+ <!-- 200823 -->
363
+ ## Discord
364
+
365
+ For further support, and discussions on these models and AI in general, join us at:
366
+
367
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
368
+
369
+ ## Thanks, and how to contribute
370
+
371
+ Thanks to the [chirper.ai](https://chirper.ai) team!
372
+
373
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
374
+
375
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
376
+
377
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
378
+
379
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
380
+
381
+ * Patreon: https://patreon.com/TheBlokeAI
382
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
383
+
384
+ **Special thanks to**: Aemon Algiz.
385
+
386
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
387
+
388
+
389
+ Thank you to all my generous patrons and donaters!
390
+
391
+ And thank you again to a16z for their generous grant.
392
+
393
+ <!-- footer end -->
394
+
395
+ # Original model card: SciPhi-AI's Sensei 7B v1
396
+
397
+
398
+ # Sensei-7B-V1 Model Card
399
+
400
+ Sensei-7B-V1 is a Large Language Model (LLM) fine-tuned from OpenPipe's mistral-ft-optimized-1218, which is based on Mistral-7B. Sensei-7B-V1 was was fine-tuned with a fully synthetic dataset to specialize at performing retrieval-augmented generation (RAG) over detailed web search results. This model strives to specialize in using search, such as [AgentSearch](https://huggingface.co/datasets/SciPhi/AgentSearch-V1), to generate accurate and well-cited summaries from a range of search results, providing more accurate answers to user queries. Please refer to the [docs here](https://agent-search.readthedocs.io/en/latest/) for more information on how to run Sensei end-to-end.
401
+
402
+ Currently, Sensei is available via hosted api at https://www.sciphi.ai. You can try a demonstration [here](https://search.sciphi.ai/).
403
+
404
+ ## Model Architecture
405
+
406
+ Base Model: mistral-ft-optimized-1218
407
+
408
+ **Architecture Features:**
409
+ - Transformer-based model
410
+ - Grouped-Query Attention
411
+ - Sliding-Window Attention
412
+ - Byte-fallback BPE tokenizer
413
+
414
+
415
+ ## Using the Model
416
+
417
+ It is recommended to use a single search query. The model will return an answer using search results as context.
418
+
419
+ Using the AgentSearch package an example is shown below.
420
+ ```
421
+ export SCIPHI_API_KEY=MY_SCIPHI_API_KEY
422
+ # Use `Sensei` for LLM RAG w/ AgentSearch
423
+ python -m agent_search.scripts.run_rag run --query="What is Fermat's last theorem?"
424
+ ```
425
+
426
+ Alternatively, you may provide your own search context directly to the model by adhereing to the following format:
427
+
428
+ ```
429
+ ### Instruction:
430
+ Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries.
431
+
432
+ Query:
433
+ {prompt}
434
+ \n\n
435
+ Search Results:
436
+ {context}
437
+ \n\n
438
+ Query:
439
+ {prompt}
440
+
441
+ ### Response:
442
+ {"summary":
443
+ ```
444
+
445
+ __Note__: The inclusion of the text '{"summary":' following the Response footer is intentional. This ensures that the model responds with the proper json format, failure to include this leading prefix can cause small deviaitons. Combining the output with the leading string '{"summary":' results in a properly formatted JSON with keys 'summary' and 'other_queries'.
446
+
447
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
448
+
449
+ ## References
450
+
451
+ 1. OpenPipe AI. (2023). Model Card for mistral-ft-optimized-1218. The mistral-ft-1218 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters optimized for downstream fine-tuning on a variety of tasks. For full details, please refer to the release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)