TheBloke commited on
Commit
1d49693
·
1 Parent(s): 3b7a6b5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +428 -0
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ValiantLabs/ShiningValiantXS
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: llama2
7
+ model_creator: Valiant Labs
8
+ model_name: ShiningValiantXS 13B
9
+ model_type: llama
10
+ pipeline_tag: text-generation
11
+ prompt_template: '[INST] <<SYS>>
12
+
13
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as
14
+ possible, while being safe. Your answers should not include any harmful, unethical,
15
+ racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses
16
+ are socially unbiased and positive in nature. If a question does not make any sense,
17
+ or is not factually coherent, explain why instead of answering something not correct.
18
+ If you don''t know the answer to a question, please don''t share false information.
19
+
20
+ <</SYS>>
21
+
22
+ {prompt} [/INST]
23
+
24
+ '
25
+ quantized_by: TheBloke
26
+ tags:
27
+ - shining-valiant
28
+ - valiant
29
+ - valiant-labs
30
+ - llama
31
+ - llama-2
32
+ - llama-2-chat
33
+ - 13b
34
+ ---
35
+ <!-- markdownlint-disable MD041 -->
36
+
37
+ <!-- header start -->
38
+ <!-- 200823 -->
39
+ <div style="width: auto; margin-left: auto; margin-right: auto">
40
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
41
+ </div>
42
+ <div style="display: flex; justify-content: space-between; width: 100%;">
43
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
45
+ </div>
46
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
47
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
48
+ </div>
49
+ </div>
50
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
51
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
52
+ <!-- header end -->
53
+
54
+ # ShiningValiantXS 13B - AWQ
55
+ - Model creator: [Valiant Labs](https://huggingface.co/ValiantLabs)
56
+ - Original model: [ShiningValiantXS 13B](https://huggingface.co/ValiantLabs/ShiningValiantXS)
57
+
58
+ <!-- description start -->
59
+ ## Description
60
+
61
+ This repo contains AWQ model files for [Valiant Labs's ShiningValiantXS 13B](https://huggingface.co/ValiantLabs/ShiningValiantXS).
62
+
63
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
64
+
65
+
66
+ ### About AWQ
67
+
68
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
69
+
70
+ It is supported by:
71
+
72
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
73
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
74
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
75
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
76
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
77
+
78
+ <!-- description end -->
79
+ <!-- repositories-available start -->
80
+ ## Repositories available
81
+
82
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/ShiningValiantXS-AWQ)
83
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/ShiningValiantXS-GPTQ)
84
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/ShiningValiantXS-GGUF)
85
+ * [Valiant Labs's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ValiantLabs/ShiningValiantXS)
86
+ <!-- repositories-available end -->
87
+
88
+ <!-- prompt-template start -->
89
+ ## Prompt template: Llama-2-Chat
90
+
91
+ ```
92
+ [INST] <<SYS>>
93
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
94
+ <</SYS>>
95
+ {prompt} [/INST]
96
+
97
+ ```
98
+
99
+ <!-- prompt-template end -->
100
+
101
+
102
+ <!-- README_AWQ.md-provided-files start -->
103
+ ## Provided files, and AWQ parameters
104
+
105
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
106
+
107
+ Models are released as sharded safetensors files.
108
+
109
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
110
+ | ------ | ---- | -- | ----------- | ------- | ---- |
111
+ | [main](https://huggingface.co/TheBloke/ShiningValiantXS-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB
112
+
113
+ <!-- README_AWQ.md-provided-files end -->
114
+
115
+ <!-- README_AWQ.md-text-generation-webui start -->
116
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
117
+
118
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
119
+
120
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
121
+
122
+ 1. Click the **Model tab**.
123
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/ShiningValiantXS-AWQ`.
124
+ 3. Click **Download**.
125
+ 4. The model will start downloading. Once it's finished it will say "Done".
126
+ 5. In the top left, click the refresh icon next to **Model**.
127
+ 6. In the **Model** dropdown, choose the model you just downloaded: `ShiningValiantXS-AWQ`
128
+ 7. Select **Loader: AutoAWQ**.
129
+ 8. Click Load, and the model will load and is now ready for use.
130
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
131
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
132
+ <!-- README_AWQ.md-text-generation-webui end -->
133
+
134
+ <!-- README_AWQ.md-use-from-vllm start -->
135
+ ## Multi-user inference server: vLLM
136
+
137
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
138
+
139
+ - Please ensure you are using vLLM version 0.2 or later.
140
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
141
+
142
+ For example:
143
+
144
+ ```shell
145
+ python3 -m vllm.entrypoints.api_server --model TheBloke/ShiningValiantXS-AWQ --quantization awq --dtype auto
146
+ ```
147
+
148
+ - When using vLLM from Python code, again set `quantization=awq`.
149
+
150
+ For example:
151
+
152
+ ```python
153
+ from vllm import LLM, SamplingParams
154
+
155
+ prompts = [
156
+ "Tell me about AI",
157
+ "Write a story about llamas",
158
+ "What is 291 - 150?",
159
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
160
+ ]
161
+ prompt_template=f'''[INST] <<SYS>>
162
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
163
+ <</SYS>>
164
+ {prompt} [/INST]
165
+ '''
166
+
167
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
168
+
169
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
170
+
171
+ llm = LLM(model="TheBloke/ShiningValiantXS-AWQ", quantization="awq", dtype="auto")
172
+
173
+ outputs = llm.generate(prompts, sampling_params)
174
+
175
+ # Print the outputs.
176
+ for output in outputs:
177
+ prompt = output.prompt
178
+ generated_text = output.outputs[0].text
179
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
180
+ ```
181
+ <!-- README_AWQ.md-use-from-vllm start -->
182
+
183
+ <!-- README_AWQ.md-use-from-tgi start -->
184
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
185
+
186
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
187
+
188
+ Example Docker parameters:
189
+
190
+ ```shell
191
+ --model-id TheBloke/ShiningValiantXS-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
192
+ ```
193
+
194
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
195
+
196
+ ```shell
197
+ pip3 install huggingface-hub
198
+ ```
199
+
200
+ ```python
201
+ from huggingface_hub import InferenceClient
202
+
203
+ endpoint_url = "https://your-endpoint-url-here"
204
+
205
+ prompt = "Tell me about AI"
206
+ prompt_template=f'''[INST] <<SYS>>
207
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
208
+ <</SYS>>
209
+ {prompt} [/INST]
210
+ '''
211
+
212
+ client = InferenceClient(endpoint_url)
213
+ response = client.text_generation(prompt,
214
+ max_new_tokens=128,
215
+ do_sample=True,
216
+ temperature=0.7,
217
+ top_p=0.95,
218
+ top_k=40,
219
+ repetition_penalty=1.1)
220
+
221
+ print(f"Model output: ", response)
222
+ ```
223
+ <!-- README_AWQ.md-use-from-tgi end -->
224
+
225
+ <!-- README_AWQ.md-use-from-python start -->
226
+ ## Inference from Python code using Transformers
227
+
228
+ ### Install the necessary packages
229
+
230
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
231
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
232
+
233
+ ```shell
234
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
235
+ ```
236
+
237
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
238
+
239
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
240
+
241
+ ```shell
242
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
243
+ ```
244
+
245
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
246
+
247
+ ```shell
248
+ pip3 uninstall -y autoawq
249
+ git clone https://github.com/casper-hansen/AutoAWQ
250
+ cd AutoAWQ
251
+ pip3 install .
252
+ ```
253
+
254
+ ### Transformers example code (requires Transformers 4.35.0 and later)
255
+
256
+ ```python
257
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
258
+
259
+ model_name_or_path = "TheBloke/ShiningValiantXS-AWQ"
260
+
261
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
262
+ model = AutoModelForCausalLM.from_pretrained(
263
+ model_name_or_path,
264
+ low_cpu_mem_usage=True,
265
+ device_map="cuda:0"
266
+ )
267
+
268
+ # Using the text streamer to stream output one token at a time
269
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
270
+
271
+ prompt = "Tell me about AI"
272
+ prompt_template=f'''[INST] <<SYS>>
273
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
274
+ <</SYS>>
275
+ {prompt} [/INST]
276
+ '''
277
+
278
+ # Convert prompt to tokens
279
+ tokens = tokenizer(
280
+ prompt_template,
281
+ return_tensors='pt'
282
+ ).input_ids.cuda()
283
+
284
+ generation_params = {
285
+ "do_sample": True,
286
+ "temperature": 0.7,
287
+ "top_p": 0.95,
288
+ "top_k": 40,
289
+ "max_new_tokens": 512,
290
+ "repetition_penalty": 1.1
291
+ }
292
+
293
+ # Generate streamed output, visible one token at a time
294
+ generation_output = model.generate(
295
+ tokens,
296
+ streamer=streamer,
297
+ **generation_params
298
+ )
299
+
300
+ # Generation without a streamer, which will include the prompt in the output
301
+ generation_output = model.generate(
302
+ tokens,
303
+ **generation_params
304
+ )
305
+
306
+ # Get the tokens from the output, decode them, print them
307
+ token_output = generation_output[0]
308
+ text_output = tokenizer.decode(token_output)
309
+ print("model.generate output: ", text_output)
310
+
311
+ # Inference is also possible via Transformers' pipeline
312
+ from transformers import pipeline
313
+
314
+ pipe = pipeline(
315
+ "text-generation",
316
+ model=model,
317
+ tokenizer=tokenizer,
318
+ **generation_params
319
+ )
320
+
321
+ pipe_output = pipe(prompt_template)[0]['generated_text']
322
+ print("pipeline output: ", pipe_output)
323
+
324
+ ```
325
+ <!-- README_AWQ.md-use-from-python end -->
326
+
327
+ <!-- README_AWQ.md-compatibility start -->
328
+ ## Compatibility
329
+
330
+ The files provided are tested to work with:
331
+
332
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
333
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
334
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
335
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
336
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
337
+
338
+ <!-- README_AWQ.md-compatibility end -->
339
+
340
+ <!-- footer start -->
341
+ <!-- 200823 -->
342
+ ## Discord
343
+
344
+ For further support, and discussions on these models and AI in general, join us at:
345
+
346
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
347
+
348
+ ## Thanks, and how to contribute
349
+
350
+ Thanks to the [chirper.ai](https://chirper.ai) team!
351
+
352
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
353
+
354
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
355
+
356
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
357
+
358
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
359
+
360
+ * Patreon: https://patreon.com/TheBlokeAI
361
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
362
+
363
+ **Special thanks to**: Aemon Algiz.
364
+
365
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
366
+
367
+
368
+ Thank you to all my generous patrons and donaters!
369
+
370
+ And thank you again to a16z for their generous grant.
371
+
372
+ <!-- footer end -->
373
+
374
+ # Original model card: Valiant Labs's ShiningValiantXS 13B
375
+
376
+
377
+
378
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/EXX7TKbB-R6arxww2mk0R.jpeg)
379
+
380
+
381
+
382
+ Shining Valiant XS is a chat model built on the Llama 2 architecture, finetuned on our data for insight, creativity, passion, and friendliness.
383
+ - Uses the llama-2-13b-chat model, with safetensors
384
+ - Trained through multiple finetuning runs on public and private data
385
+ - the personality of our 70b [Shining Valiant](https://huggingface.co/ValiantLabs/ShiningValiant) model, now at 13b!
386
+
387
+ ## Version
388
+
389
+ This is Version **1.0** of Shining Valiant XS.
390
+
391
+ New models are released for everyone once our team's training and validation process is complete!
392
+
393
+ ## Evaluation
394
+
395
+ Awaiting results from the Open LLM Leaderboard.
396
+
397
+ ## Prompting Guide
398
+ Shining Valiant XS uses the same prompt format as Llama 2 Chat - feel free to use your existing prompts and scripts!
399
+ A few examples of different formats:
400
+
401
+ 1. [INST] Good morning! Can you let me know how to parse a text file and turn the semicolons into commas? [/INST]
402
+
403
+ 2. [INST] (You are an intelligent, helpful AI assistant.) Hello, can you write me a thank you letter? [/INST]
404
+
405
+ 3. [INST] << SYS >> You are an intelligent, helpful AI assistant. << /SYS >> Deep dive about a country with interesting history: [/INST]
406
+
407
+ ## The Model
408
+ Shining Valiant XS is built on top of Daring Fortitude, which uses Llama 2's 13b parameter architecture and features upgraded general capability.
409
+
410
+ From there, we've created Shining Valiant XS through multiple finetuning runs on different compositions of our private dataset, the same one we use for our [Shining Valiant](https://huggingface.co/ValiantLabs/ShiningValiant) model.
411
+
412
+ Our private data focuses primarily on applying Shining Valiant's personality: she's friendly, enthusiastic, insightful, knowledgeable, and loves to learn!
413
+
414
+ We are actively working on expanding and improving the Shining Valiant dataset for use in future releases of the Shining Valiant series of models.
415
+
416
+
417
+
418
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg)
419
+
420
+
421
+ Shining Valiant XS is created by [Valiant Labs.](http://valiantlabs.ca/)
422
+
423
+ [Follow us on X for updates on our models!](https://twitter.com/valiant_labs)
424
+
425
+ We care about open source.
426
+ For everyone to use.
427
+
428
+ We encourage others to finetune further from our models.