TheBloke commited on
Commit
4ea5b9e
·
1 Parent(s): 0a75be9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +413 -0
README.md ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: migtissera/SynthIA-70B-v1.5
3
+ inference: false
4
+ license: llama2
5
+ model_creator: Migel Tissera
6
+ model_name: Synthia 70B v1.5
7
+ model_type: llama
8
+ prompt_template: 'SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack
9
+ when necessary to construct a clear, cohesive Chain of Thought reasoning. Always
10
+ answer without hesitation.
11
+
12
+ USER: {prompt}
13
+
14
+ ASSISTANT:
15
+
16
+ '
17
+ quantized_by: TheBloke
18
+ ---
19
+ <!-- markdownlint-disable MD041 -->
20
+
21
+ <!-- header start -->
22
+ <!-- 200823 -->
23
+ <div style="width: auto; margin-left: auto; margin-right: auto">
24
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
25
+ </div>
26
+ <div style="display: flex; justify-content: space-between; width: 100%;">
27
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
29
+ </div>
30
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
31
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
32
+ </div>
33
+ </div>
34
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
35
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
36
+ <!-- header end -->
37
+
38
+ # Synthia 70B v1.5 - AWQ
39
+ - Model creator: [Migel Tissera](https://huggingface.co/migtissera)
40
+ - Original model: [Synthia 70B v1.5](https://huggingface.co/migtissera/SynthIA-70B-v1.5)
41
+
42
+ <!-- description start -->
43
+ ## Description
44
+
45
+ This repo contains AWQ model files for [Migel Tissera's Synthia 70B v1.5](https://huggingface.co/migtissera/SynthIA-70B-v1.5).
46
+
47
+
48
+ ### About AWQ
49
+
50
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
51
+
52
+ It is supported by:
53
+
54
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
55
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
56
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
57
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
58
+
59
+ <!-- description end -->
60
+ <!-- repositories-available start -->
61
+ ## Repositories available
62
+
63
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SynthIA-70B-v1.5-AWQ)
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SynthIA-70B-v1.5-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SynthIA-70B-v1.5-GGUF)
66
+ * [Migel Tissera's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/migtissera/SynthIA-70B-v1.5)
67
+ <!-- repositories-available end -->
68
+
69
+ <!-- prompt-template start -->
70
+ ## Prompt template: Synthia-CoT
71
+
72
+ ```
73
+ SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
74
+ USER: {prompt}
75
+ ASSISTANT:
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_AWQ.md-provided-files start -->
83
+ ## Provided files, and AWQ parameters
84
+
85
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
86
+
87
+ Models are released as sharded safetensors files.
88
+
89
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
90
+ | ------ | ---- | -- | ----------- | ------- | ---- |
91
+ | [main](https://huggingface.co/TheBloke/SynthIA-70B-v1.5-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.61 GB
92
+
93
+ <!-- README_AWQ.md-provided-files end -->
94
+
95
+ <!-- README_AWQ.md-text-generation-webui start -->
96
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
97
+
98
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
+
100
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
101
+
102
+ 1. Click the **Model tab**.
103
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/SynthIA-70B-v1.5-AWQ`.
104
+ 3. Click **Download**.
105
+ 4. The model will start downloading. Once it's finished it will say "Done".
106
+ 5. In the top left, click the refresh icon next to **Model**.
107
+ 6. In the **Model** dropdown, choose the model you just downloaded: `SynthIA-70B-v1.5-AWQ`
108
+ 7. Select **Loader: AutoAWQ**.
109
+ 8. Click Load, and the model will load and is now ready for use.
110
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
111
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
112
+ <!-- README_AWQ.md-text-generation-webui end -->
113
+
114
+ <!-- README_AWQ.md-use-from-vllm start -->
115
+ ## Multi-user inference server: vLLM
116
+
117
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
118
+
119
+ - Please ensure you are using vLLM version 0.2 or later.
120
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
121
+
122
+ For example:
123
+
124
+ ```shell
125
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/SynthIA-70B-v1.5-AWQ --quantization awq
126
+ ```
127
+
128
+ - When using vLLM from Python code, again set `quantization=awq`.
129
+
130
+ For example:
131
+
132
+ ```python
133
+ from vllm import LLM, SamplingParams
134
+
135
+ prompts = [
136
+ "Tell me about AI",
137
+ "Write a story about llamas",
138
+ "What is 291 - 150?",
139
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
140
+ ]
141
+ prompt_template=f'''SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
142
+ USER: {prompt}
143
+ ASSISTANT:
144
+ '''
145
+
146
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
147
+
148
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
149
+
150
+ llm = LLM(model="TheBloke/SynthIA-70B-v1.5-AWQ", quantization="awq", dtype="auto")
151
+
152
+ outputs = llm.generate(prompts, sampling_params)
153
+
154
+ # Print the outputs.
155
+ for output in outputs:
156
+ prompt = output.prompt
157
+ generated_text = output.outputs[0].text
158
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
159
+ ```
160
+ <!-- README_AWQ.md-use-from-vllm start -->
161
+
162
+ <!-- README_AWQ.md-use-from-tgi start -->
163
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
164
+
165
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
166
+
167
+ Example Docker parameters:
168
+
169
+ ```shell
170
+ --model-id TheBloke/SynthIA-70B-v1.5-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
171
+ ```
172
+
173
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
174
+
175
+ ```shell
176
+ pip3 install huggingface-hub
177
+ ```
178
+
179
+ ```python
180
+ from huggingface_hub import InferenceClient
181
+
182
+ endpoint_url = "https://your-endpoint-url-here"
183
+
184
+ prompt = "Tell me about AI"
185
+ prompt_template=f'''SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
186
+ USER: {prompt}
187
+ ASSISTANT:
188
+ '''
189
+
190
+ client = InferenceClient(endpoint_url)
191
+ response = client.text_generation(prompt,
192
+ max_new_tokens=128,
193
+ do_sample=True,
194
+ temperature=0.7,
195
+ top_p=0.95,
196
+ top_k=40,
197
+ repetition_penalty=1.1)
198
+
199
+ print(f"Model output: ", response)
200
+ ```
201
+ <!-- README_AWQ.md-use-from-tgi end -->
202
+
203
+ <!-- README_AWQ.md-use-from-python start -->
204
+ ## Inference from Python code using AutoAWQ
205
+
206
+ ### Install the AutoAWQ package
207
+
208
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
209
+
210
+ ```shell
211
+ pip3 install autoawq
212
+ ```
213
+
214
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
215
+
216
+ ```shell
217
+ pip3 uninstall -y autoawq
218
+ git clone https://github.com/casper-hansen/AutoAWQ
219
+ cd AutoAWQ
220
+ pip3 install .
221
+ ```
222
+
223
+ ### AutoAWQ example code
224
+
225
+ ```python
226
+ from awq import AutoAWQForCausalLM
227
+ from transformers import AutoTokenizer
228
+
229
+ model_name_or_path = "TheBloke/SynthIA-70B-v1.5-AWQ"
230
+
231
+ # Load tokenizer
232
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
233
+ # Load model
234
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
235
+ trust_remote_code=False, safetensors=True)
236
+
237
+ prompt = "Tell me about AI"
238
+ prompt_template=f'''SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
239
+ USER: {prompt}
240
+ ASSISTANT:
241
+ '''
242
+
243
+ print("*** Running model.generate:")
244
+
245
+ token_input = tokenizer(
246
+ prompt_template,
247
+ return_tensors='pt'
248
+ ).input_ids.cuda()
249
+
250
+ # Generate output
251
+ generation_output = model.generate(
252
+ token_input,
253
+ do_sample=True,
254
+ temperature=0.7,
255
+ top_p=0.95,
256
+ top_k=40,
257
+ max_new_tokens=512
258
+ )
259
+
260
+ # Get the tokens from the output, decode them, print them
261
+ token_output = generation_output[0]
262
+ text_output = tokenizer.decode(token_output)
263
+ print("LLM output: ", text_output)
264
+
265
+ """
266
+ # Inference should be possible with transformers pipeline as well in future
267
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
268
+ from transformers import pipeline
269
+
270
+ print("*** Pipeline:")
271
+ pipe = pipeline(
272
+ "text-generation",
273
+ model=model,
274
+ tokenizer=tokenizer,
275
+ max_new_tokens=512,
276
+ do_sample=True,
277
+ temperature=0.7,
278
+ top_p=0.95,
279
+ top_k=40,
280
+ repetition_penalty=1.1
281
+ )
282
+
283
+ print(pipe(prompt_template)[0]['generated_text'])
284
+ """
285
+ ```
286
+ <!-- README_AWQ.md-use-from-python end -->
287
+
288
+ <!-- README_AWQ.md-compatibility start -->
289
+ ## Compatibility
290
+
291
+ The files provided are tested to work with:
292
+
293
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
294
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
295
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
296
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
297
+
298
+ <!-- README_AWQ.md-compatibility end -->
299
+
300
+ <!-- footer start -->
301
+ <!-- 200823 -->
302
+ ## Discord
303
+
304
+ For further support, and discussions on these models and AI in general, join us at:
305
+
306
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
307
+
308
+ ## Thanks, and how to contribute
309
+
310
+ Thanks to the [chirper.ai](https://chirper.ai) team!
311
+
312
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
313
+
314
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
315
+
316
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
317
+
318
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
319
+
320
+ * Patreon: https://patreon.com/TheBlokeAI
321
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
322
+
323
+ **Special thanks to**: Aemon Algiz.
324
+
325
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
326
+
327
+
328
+ Thank you to all my generous patrons and donaters!
329
+
330
+ And thank you again to a16z for their generous grant.
331
+
332
+ <!-- footer end -->
333
+
334
+ # Original model card: Migel Tissera's Synthia 70B v1.5
335
+
336
+
337
+ ## Example Usage
338
+
339
+ ### Prompt format:
340
+
341
+ ```
342
+ SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
343
+ USER: How is a rocket launched from the surface of the earth to Low Earth Orbit?
344
+ ASSISTANT:
345
+ ```
346
+
347
+ ### Code example:
348
+
349
+ ```python
350
+ import torch, json
351
+ from transformers import AutoModelForCausalLM, AutoTokenizer
352
+
353
+ model_path = "migtissera/Synthia-70B-v1.5"
354
+ output_file_path = "./Synthia-70B-v1.5-conversations.jsonl"
355
+
356
+ model = AutoModelForCausalLM.from_pretrained(
357
+ model_path,
358
+ torch_dtype=torch.float16,
359
+ device_map="auto",
360
+ load_in_8bit=False,
361
+ trust_remote_code=True,
362
+ )
363
+
364
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
365
+
366
+
367
+ def generate_text(instruction):
368
+ tokens = tokenizer.encode(instruction)
369
+ tokens = torch.LongTensor(tokens).unsqueeze(0)
370
+ tokens = tokens.to("cuda")
371
+
372
+ instance = {
373
+ "input_ids": tokens,
374
+ "top_p": 1.0,
375
+ "temperature": 0.75,
376
+ "generate_len": 1024,
377
+ "top_k": 50,
378
+ }
379
+
380
+ length = len(tokens[0])
381
+ with torch.no_grad():
382
+ rest = model.generate(
383
+ input_ids=tokens,
384
+ max_length=length + instance["generate_len"],
385
+ use_cache=True,
386
+ do_sample=True,
387
+ top_p=instance["top_p"],
388
+ temperature=instance["temperature"],
389
+ top_k=instance["top_k"],
390
+ num_return_sequences=1,
391
+ )
392
+ output = rest[0][length:]
393
+ string = tokenizer.decode(output, skip_special_tokens=True)
394
+ answer = string.split("USER:")[0].strip()
395
+ return f"{answer}"
396
+
397
+
398
+ conversation = f"SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation."
399
+
400
+
401
+ while True:
402
+ user_input = input("You: ")
403
+ llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
404
+ answer = generate_text(llm_prompt)
405
+ print(answer)
406
+ conversation = f"{llm_prompt}{answer}"
407
+ json_data = {"prompt": user_input, "answer": answer}
408
+
409
+ ## Save your conversation
410
+ with open(output_file_path, "a") as output_file:
411
+ output_file.write(json.dumps(json_data) + "\n")
412
+
413
+ ```