TheBloke commited on
Commit
c76d368
·
1 Parent(s): ec26070

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -47
README.md CHANGED
@@ -3,7 +3,7 @@ inference: false
3
  license: llama2
4
  model_creator: Migel Tissera
5
  model_link: https://huggingface.co/migtissera/Synthia-7b
6
- model_name: Synthia 7B
7
  model_type: llama
8
  quantized_by: TheBloke
9
  ---
@@ -25,44 +25,54 @@ quantized_by: TheBloke
25
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
26
  <!-- header end -->
27
 
28
- # Synthia 7B - GPTQ
29
  - Model creator: [Migel Tissera](https://huggingface.co/migtissera)
30
- - Original model: [Synthia 7B](https://huggingface.co/migtissera/Synthia-7b)
31
 
 
32
  ## Description
33
 
34
- This repo contains GPTQ model files for [Migel Tissera's Synthia 7B](https://huggingface.co/migtissera/Synthia-7b).
35
 
36
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
37
 
 
 
38
  ## Repositories available
39
 
40
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Synthia-7B-GPTQ)
41
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Synthia-7B-GGML)
 
42
  * [Migel Tissera's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/migtissera/Synthia-7b)
 
43
 
 
44
  ## Prompt template: Orca-Vicuna
45
 
46
  ```
47
  SYSTEM: {system_message}
48
  USER: {prompt}
49
  ASSISTANT:
 
50
  ```
51
 
 
 
 
52
  ## Provided files and GPTQ parameters
53
 
54
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
55
 
56
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
57
 
58
- All GPTQ files are made with AutoGPTQ.
59
 
60
  <details>
61
  <summary>Explanation of GPTQ parameters</summary>
62
 
63
  - Bits: The bit size of the quantised model.
64
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
65
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
66
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
67
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
68
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -79,6 +89,9 @@ All GPTQ files are made with AutoGPTQ.
79
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Synthia-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
80
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Synthia-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
81
 
 
 
 
82
  ## How to download from branches
83
 
84
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Synthia-7B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -87,77 +100,77 @@ All GPTQ files are made with AutoGPTQ.
87
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Synthia-7B-GPTQ
88
  ```
89
  - In Python Transformers code, the branch is the `revision` parameter; see below.
90
-
 
91
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
92
 
93
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
94
 
95
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
96
 
97
  1. Click the **Model tab**.
98
  2. Under **Download custom model or LoRA**, enter `TheBloke/Synthia-7B-GPTQ`.
99
  - To download from a specific branch, enter for example `TheBloke/Synthia-7B-GPTQ:gptq-4bit-32g-actorder_True`
100
  - see Provided Files above for the list of branches for each option.
101
  3. Click **Download**.
102
- 4. The model will start downloading. Once it's finished it will say "Done"
103
  5. In the top left, click the refresh icon next to **Model**.
104
  6. In the **Model** dropdown, choose the model you just downloaded: `Synthia-7B-GPTQ`
105
  7. The model will automatically load, and is now ready for use!
106
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
107
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
108
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
109
 
 
110
  ## How to use this GPTQ model from Python code
111
 
112
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
113
 
114
- ```
115
- pip3 install auto-gptq
116
- ```
117
 
118
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
119
  ```
 
 
 
 
120
  pip3 uninstall -y auto-gptq
121
  git clone https://github.com/PanQiWei/AutoGPTQ
122
  cd AutoGPTQ
123
  pip3 install .
124
  ```
125
 
126
- Then try the following example code:
 
 
 
 
 
 
 
 
127
 
128
  ```python
129
- from transformers import AutoTokenizer, pipeline, logging
130
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
131
 
132
  model_name_or_path = "TheBloke/Synthia-7B-GPTQ"
133
-
134
- use_triton = False
 
 
 
 
135
 
136
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
137
 
138
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
139
- use_safetensors=True,
140
- trust_remote_code=False,
141
- device="cuda:0",
142
- use_triton=use_triton,
143
- quantize_config=None)
144
-
145
- """
146
- # To download from a specific branch, use the revision parameter, as in this example:
147
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
148
-
149
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
150
- revision="gptq-4bit-32g-actorder_True",
151
- use_safetensors=True,
152
- trust_remote_code=False,
153
- device="cuda:0",
154
- quantize_config=None)
155
- """
156
-
157
  prompt = "Tell me about AI"
158
  prompt_template=f'''SYSTEM: {system_message}
159
  USER: {prompt}
160
  ASSISTANT:
 
161
  '''
162
 
163
  print("\n\n*** Generate:")
@@ -168,9 +181,6 @@ print(tokenizer.decode(output[0]))
168
 
169
  # Inference can also be done using transformers' pipeline
170
 
171
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
172
- logging.set_verbosity(logging.CRITICAL)
173
-
174
  print("*** Pipeline:")
175
  pipe = pipeline(
176
  "text-generation",
@@ -184,12 +194,17 @@ pipe = pipeline(
184
 
185
  print(pipe(prompt_template)[0]['generated_text'])
186
  ```
 
187
 
 
188
  ## Compatibility
189
 
190
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
191
 
192
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
193
 
194
  <!-- footer start -->
195
  <!-- 200823 -->
@@ -214,7 +229,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
214
 
215
  **Special thanks to**: Aemon Algiz.
216
 
217
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
218
 
219
 
220
  Thank you to all my generous patrons and donaters!
@@ -223,5 +238,5 @@ And thank you again to a16z for their generous grant.
223
 
224
  <!-- footer end -->
225
 
226
- # Original model card: Migel Tissera's Synthia 7B
227
 
 
3
  license: llama2
4
  model_creator: Migel Tissera
5
  model_link: https://huggingface.co/migtissera/Synthia-7b
6
+ model_name: Synthia 7b
7
  model_type: llama
8
  quantized_by: TheBloke
9
  ---
 
25
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
26
  <!-- header end -->
27
 
28
+ # Synthia 7b - GPTQ
29
  - Model creator: [Migel Tissera](https://huggingface.co/migtissera)
30
+ - Original model: [Synthia 7b](https://huggingface.co/migtissera/Synthia-7b)
31
 
32
+ <!-- description start -->
33
  ## Description
34
 
35
+ This repo contains GPTQ model files for [Migel Tissera's Synthia 7b](https://huggingface.co/migtissera/Synthia-7b).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
39
+ <!-- description end -->
40
+ <!-- repositories-available start -->
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Synthia-7B-GPTQ)
44
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Synthia-7B-GGUF)
45
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Synthia-7B-GGML)
46
  * [Migel Tissera's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/migtissera/Synthia-7b)
47
+ <!-- repositories-available end -->
48
 
49
+ <!-- prompt-template start -->
50
  ## Prompt template: Orca-Vicuna
51
 
52
  ```
53
  SYSTEM: {system_message}
54
  USER: {prompt}
55
  ASSISTANT:
56
+
57
  ```
58
 
59
+ <!-- prompt-template end -->
60
+
61
+ <!-- README_GPTQ.md-provided-files start -->
62
  ## Provided files and GPTQ parameters
63
 
64
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
 
66
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
 
68
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
69
 
70
  <details>
71
  <summary>Explanation of GPTQ parameters</summary>
72
 
73
  - Bits: The bit size of the quantised model.
74
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
76
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
89
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Synthia-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
90
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Synthia-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
91
 
92
+ <!-- README_GPTQ.md-provided-files end -->
93
+
94
+ <!-- README_GPTQ.md-download-from-branches start -->
95
  ## How to download from branches
96
 
97
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Synthia-7B-GPTQ:gptq-4bit-32g-actorder_True`
 
100
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Synthia-7B-GPTQ
101
  ```
102
  - In Python Transformers code, the branch is the `revision` parameter; see below.
103
+ <!-- README_GPTQ.md-download-from-branches end -->
104
+ <!-- README_GPTQ.md-text-generation-webui start -->
105
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
 
109
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
110
 
111
  1. Click the **Model tab**.
112
  2. Under **Download custom model or LoRA**, enter `TheBloke/Synthia-7B-GPTQ`.
113
  - To download from a specific branch, enter for example `TheBloke/Synthia-7B-GPTQ:gptq-4bit-32g-actorder_True`
114
  - see Provided Files above for the list of branches for each option.
115
  3. Click **Download**.
116
+ 4. The model will start downloading. Once it's finished it will say "Done".
117
  5. In the top left, click the refresh icon next to **Model**.
118
  6. In the **Model** dropdown, choose the model you just downloaded: `Synthia-7B-GPTQ`
119
  7. The model will automatically load, and is now ready for use!
120
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
122
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
123
+ <!-- README_GPTQ.md-text-generation-webui end -->
124
 
125
+ <!-- README_GPTQ.md-use-from-python start -->
126
  ## How to use this GPTQ model from Python code
127
 
128
+ ### Install the necessary packages
129
 
130
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
131
 
132
+ ```shell
133
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
134
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
135
  ```
136
+
137
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
138
+
139
+ ```shell
140
  pip3 uninstall -y auto-gptq
141
  git clone https://github.com/PanQiWei/AutoGPTQ
142
  cd AutoGPTQ
143
  pip3 install .
144
  ```
145
 
146
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
147
+
148
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
149
+ ```shell
150
+ pip3 uninstall -y transformers
151
+ pip3 install git+https://github.com/huggingface/transformers.git
152
+ ```
153
+
154
+ ### You can then use the following code
155
 
156
  ```python
157
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
158
 
159
  model_name_or_path = "TheBloke/Synthia-7B-GPTQ"
160
+ # To use a different branch, change revision
161
+ # For example: revision="gptq-4bit-32g-actorder_True"
162
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
163
+ torch_dtype=torch.float16,
164
+ device_map="auto",
165
+ revision="main")
166
 
167
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  prompt = "Tell me about AI"
170
  prompt_template=f'''SYSTEM: {system_message}
171
  USER: {prompt}
172
  ASSISTANT:
173
+
174
  '''
175
 
176
  print("\n\n*** Generate:")
 
181
 
182
  # Inference can also be done using transformers' pipeline
183
 
 
 
 
184
  print("*** Pipeline:")
185
  pipe = pipeline(
186
  "text-generation",
 
194
 
195
  print(pipe(prompt_template)[0]['generated_text'])
196
  ```
197
+ <!-- README_GPTQ.md-use-from-python end -->
198
 
199
+ <!-- README_GPTQ.md-compatibility start -->
200
  ## Compatibility
201
 
202
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
203
+
204
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
205
 
206
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
207
+ <!-- README_GPTQ.md-compatibility end -->
208
 
209
  <!-- footer start -->
210
  <!-- 200823 -->
 
229
 
230
  **Special thanks to**: Aemon Algiz.
231
 
232
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
233
 
234
 
235
  Thank you to all my generous patrons and donaters!
 
238
 
239
  <!-- footer end -->
240
 
241
+ # Original model card: Migel Tissera's Synthia 7b
242