TheBloke commited on
Commit
c3f4ab4
·
1 Parent(s): 991c83e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -39
README.md CHANGED
@@ -1,11 +1,11 @@
1
  ---
2
- base_model: migtissera/Tess-Medium-200K-v1.0
3
  inference: false
4
  license: other
5
  license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
6
  license_name: yi-34b
7
  model_creator: Migel Tissera
8
- model_name: Tess Medium 200K v1.0
9
  model_type: yi
10
  prompt_template: 'SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack
11
  when necessary to construct a clear, cohesive Chain of Thought reasoning. Always
@@ -37,14 +37,14 @@ quantized_by: TheBloke
37
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
  <!-- header end -->
39
 
40
- # Tess Medium 200K v1.0 - GGUF
41
  - Model creator: [Migel Tissera](https://huggingface.co/migtissera)
42
- - Original model: [Tess Medium 200K v1.0](https://huggingface.co/migtissera/Tess-Medium-200K-v1.0)
43
 
44
  <!-- description start -->
45
  ## Description
46
 
47
- This repo contains GGUF format model files for [Migel Tissera's Tess Medium 200K v1.0](https://huggingface.co/migtissera/Tess-Medium-200K-v1.0).
48
 
49
  These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
50
 
@@ -70,10 +70,10 @@ Here is an incomplete list of clients and libraries that are known to support GG
70
  <!-- repositories-available start -->
71
  ## Repositories available
72
 
73
- * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-AWQ)
74
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GPTQ)
75
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF)
76
- * [Migel Tissera's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/migtissera/Tess-Medium-200K-v1.0)
77
  <!-- repositories-available end -->
78
 
79
  <!-- prompt-template start -->
@@ -118,18 +118,18 @@ Refer to the Provided Files table below to see what files use which methods, and
118
 
119
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
120
  | ---- | ---- | ---- | ---- | ---- | ----- |
121
- | [tess-medium-200k-v1.0.Q2_K.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q2_K.gguf) | Q2_K | 2 | 14.56 GB| 17.06 GB | smallest, significant quality loss - not recommended for most purposes |
122
- | [tess-medium-200k-v1.0.Q3_K_S.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q3_K_S.gguf) | Q3_K_S | 3 | 14.96 GB| 17.46 GB | very small, high quality loss |
123
- | [tess-medium-200k-v1.0.Q3_K_M.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q3_K_M.gguf) | Q3_K_M | 3 | 16.64 GB| 19.14 GB | very small, high quality loss |
124
- | [tess-medium-200k-v1.0.Q3_K_L.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q3_K_L.gguf) | Q3_K_L | 3 | 18.14 GB| 20.64 GB | small, substantial quality loss |
125
- | [tess-medium-200k-v1.0.Q4_0.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q4_0.gguf) | Q4_0 | 4 | 19.47 GB| 21.97 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
126
- | [tess-medium-200k-v1.0.Q4_K_S.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q4_K_S.gguf) | Q4_K_S | 4 | 19.54 GB| 22.04 GB | small, greater quality loss |
127
- | [tess-medium-200k-v1.0.Q4_K_M.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q4_K_M.gguf) | Q4_K_M | 4 | 20.66 GB| 23.16 GB | medium, balanced quality - recommended |
128
- | [tess-medium-200k-v1.0.Q5_0.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q5_0.gguf) | Q5_0 | 5 | 23.71 GB| 26.21 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
129
- | [tess-medium-200k-v1.0.Q5_K_S.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q5_K_S.gguf) | Q5_K_S | 5 | 23.71 GB| 26.21 GB | large, low quality loss - recommended |
130
- | [tess-medium-200k-v1.0.Q5_K_M.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q5_K_M.gguf) | Q5_K_M | 5 | 24.32 GB| 26.82 GB | large, very low quality loss - recommended |
131
- | [tess-medium-200k-v1.0.Q6_K.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q6_K.gguf) | Q6_K | 6 | 28.21 GB| 30.71 GB | very large, extremely low quality loss |
132
- | [tess-medium-200k-v1.0.Q8_0.gguf](https://huggingface.co/TheBloke/Tess-Medium-200K-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q8_0.gguf) | Q8_0 | 8 | 36.54 GB| 39.04 GB | very large, extremely low quality loss - not recommended |
133
 
134
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
135
 
@@ -150,7 +150,7 @@ The following clients/libraries will automatically download models for you, prov
150
 
151
  ### In `text-generation-webui`
152
 
153
- Under Download Model, you can enter the model repo: TheBloke/Tess-Medium-200K-v1.0-GGUF and below it, a specific filename to download, such as: tess-medium-200k-v1.0.Q4_K_M.gguf.
154
 
155
  Then click Download.
156
 
@@ -165,7 +165,7 @@ pip3 install huggingface-hub
165
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
166
 
167
  ```shell
168
- huggingface-cli download TheBloke/Tess-Medium-200K-v1.0-GGUF tess-medium-200k-v1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
169
  ```
170
 
171
  <details>
@@ -174,7 +174,7 @@ huggingface-cli download TheBloke/Tess-Medium-200K-v1.0-GGUF tess-medium-200k-v1
174
  You can also download multiple files at once with a pattern:
175
 
176
  ```shell
177
- huggingface-cli download TheBloke/Tess-Medium-200K-v1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
178
  ```
179
 
180
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
@@ -188,7 +188,7 @@ pip3 install hf_transfer
188
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
189
 
190
  ```shell
191
- HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Tess-Medium-200K-v1.0-GGUF tess-medium-200k-v1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
192
  ```
193
 
194
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
@@ -201,7 +201,7 @@ Windows Command Line users: You can set the environment variable by running `set
201
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
202
 
203
  ```shell
204
- ./main -ngl 32 -m tess-medium-200k-v1.0.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.\nUSER: {prompt}\nASSISTANT:"
205
  ```
206
 
207
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
@@ -243,7 +243,7 @@ CT_METAL=1 pip install ctransformers --no-binary ctransformers
243
  from ctransformers import AutoModelForCausalLM
244
 
245
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
246
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/Tess-Medium-200K-v1.0-GGUF", model_file="tess-medium-200k-v1.0.Q4_K_M.gguf", model_type="yi", gpu_layers=50)
247
 
248
  print(llm("AI is going to"))
249
  ```
@@ -292,31 +292,25 @@ And thank you again to a16z for their generous grant.
292
  <!-- footer end -->
293
 
294
  <!-- original-model-card start -->
295
- # Original model card: Migel Tissera's Tess Medium 200K v1.0
296
 
297
 
298
  # Tess
299
 
300
- ![Tess](https://huggingface.co/migtissera/Tess-XL-v1.0/resolve/main/Tess.png)
301
 
302
- Tess, short for Tessoro/Tessoso, is a general purpose Large Language Model series. Tess-XS is trained on the Mistral-7B base.
 
 
303
 
304
 
305
  # Prompt Format:
306
 
307
  ```
308
- SYSTEM:
309
  USER: What is the relationship between Earth's atmosphere, magnetic field and gravity?
310
  ASSISTANT:
311
  ```
312
 
313
- # Synthia-CoT Format:
314
- Tess also supports Synthia-CoT format:
315
-
316
- ```
317
- SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
318
- USER:
319
- ASSISTANT:
320
- ```
321
 
322
  <!-- original-model-card end -->
 
1
  ---
2
+ base_model: migtissera/Tess-M-Creative-v1.0
3
  inference: false
4
  license: other
5
  license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
6
  license_name: yi-34b
7
  model_creator: Migel Tissera
8
+ model_name: Tess M Creative v1.0
9
  model_type: yi
10
  prompt_template: 'SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack
11
  when necessary to construct a clear, cohesive Chain of Thought reasoning. Always
 
37
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
  <!-- header end -->
39
 
40
+ # Tess M Creative v1.0 - GGUF
41
  - Model creator: [Migel Tissera](https://huggingface.co/migtissera)
42
+ - Original model: [Tess M Creative v1.0](https://huggingface.co/migtissera/Tess-M-Creative-v1.0)
43
 
44
  <!-- description start -->
45
  ## Description
46
 
47
+ This repo contains GGUF format model files for [Migel Tissera's Tess M Creative v1.0](https://huggingface.co/migtissera/Tess-M-Creative-v1.0).
48
 
49
  These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
50
 
 
70
  <!-- repositories-available start -->
71
  ## Repositories available
72
 
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF)
76
+ * [Migel Tissera's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/migtissera/Tess-M-Creative-v1.0)
77
  <!-- repositories-available end -->
78
 
79
  <!-- prompt-template start -->
 
118
 
119
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
120
  | ---- | ---- | ---- | ---- | ---- | ----- |
121
+ | [tess-medium-200k-v1.0.Q2_K.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q2_K.gguf) | Q2_K | 2 | 14.56 GB| 17.06 GB | smallest, significant quality loss - not recommended for most purposes |
122
+ | [tess-medium-200k-v1.0.Q3_K_S.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q3_K_S.gguf) | Q3_K_S | 3 | 14.96 GB| 17.46 GB | very small, high quality loss |
123
+ | [tess-medium-200k-v1.0.Q3_K_M.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q3_K_M.gguf) | Q3_K_M | 3 | 16.64 GB| 19.14 GB | very small, high quality loss |
124
+ | [tess-medium-200k-v1.0.Q3_K_L.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q3_K_L.gguf) | Q3_K_L | 3 | 18.14 GB| 20.64 GB | small, substantial quality loss |
125
+ | [tess-medium-200k-v1.0.Q4_0.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q4_0.gguf) | Q4_0 | 4 | 19.47 GB| 21.97 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
126
+ | [tess-medium-200k-v1.0.Q4_K_S.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q4_K_S.gguf) | Q4_K_S | 4 | 19.54 GB| 22.04 GB | small, greater quality loss |
127
+ | [tess-medium-200k-v1.0.Q4_K_M.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q4_K_M.gguf) | Q4_K_M | 4 | 20.66 GB| 23.16 GB | medium, balanced quality - recommended |
128
+ | [tess-medium-200k-v1.0.Q5_0.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q5_0.gguf) | Q5_0 | 5 | 23.71 GB| 26.21 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
129
+ | [tess-medium-200k-v1.0.Q5_K_S.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q5_K_S.gguf) | Q5_K_S | 5 | 23.71 GB| 26.21 GB | large, low quality loss - recommended |
130
+ | [tess-medium-200k-v1.0.Q5_K_M.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q5_K_M.gguf) | Q5_K_M | 5 | 24.32 GB| 26.82 GB | large, very low quality loss - recommended |
131
+ | [tess-medium-200k-v1.0.Q6_K.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q6_K.gguf) | Q6_K | 6 | 28.21 GB| 30.71 GB | very large, extremely low quality loss |
132
+ | [tess-medium-200k-v1.0.Q8_0.gguf](https://huggingface.co/TheBloke/Tess-M-Creative-v1.0-GGUF/blob/main/tess-medium-200k-v1.0.Q8_0.gguf) | Q8_0 | 8 | 36.54 GB| 39.04 GB | very large, extremely low quality loss - not recommended |
133
 
134
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
135
 
 
150
 
151
  ### In `text-generation-webui`
152
 
153
+ Under Download Model, you can enter the model repo: TheBloke/Tess-M-Creative-v1.0-GGUF and below it, a specific filename to download, such as: tess-m-creative-v1.0.Q4_K_M.gguf.
154
 
155
  Then click Download.
156
 
 
165
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
166
 
167
  ```shell
168
+ huggingface-cli download TheBloke/Tess-M-Creative-v1.0-GGUF tess-m-creative-v1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
169
  ```
170
 
171
  <details>
 
174
  You can also download multiple files at once with a pattern:
175
 
176
  ```shell
177
+ huggingface-cli download TheBloke/Tess-M-Creative-v1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
178
  ```
179
 
180
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
 
188
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
189
 
190
  ```shell
191
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Tess-M-Creative-v1.0-GGUF tess-m-creative-v1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
192
  ```
193
 
194
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
 
201
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
202
 
203
  ```shell
204
+ ./main -ngl 32 -m tess-m-creative-v1.0.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.\nUSER: {prompt}\nASSISTANT:"
205
  ```
206
 
207
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
 
243
  from ctransformers import AutoModelForCausalLM
244
 
245
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
246
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Tess-M-Creative-v1.0-GGUF", model_file="tess-m-creative-v1.0.Q4_K_M.gguf", model_type="yi", gpu_layers=50)
247
 
248
  print(llm("AI is going to"))
249
  ```
 
292
  <!-- footer end -->
293
 
294
  <!-- original-model-card start -->
295
+ # Original model card: Migel Tissera's Tess M Creative v1.0
296
 
297
 
298
  # Tess
299
 
300
+ ![Tess](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png)
301
 
302
+ Tess, short for Tessoro/Tessoso, is a general purpose Large Language Model series. Tess-M series is trained on the Yi-34B-200K base.
303
+
304
+ Tess-M-Creative is an AI most suited for creative tasks, such as writing, role play, design and exploring novel concepts. While it has been trained on STEM, its reasoning capabilities may lag state-of-the-art. Please download Tess-M-STEM series for reasoning, logic and STEM related tasks.
305
 
306
 
307
  # Prompt Format:
308
 
309
  ```
310
+ SYSTEM: <ANY SYSTEM CONTEXT>
311
  USER: What is the relationship between Earth's atmosphere, magnetic field and gravity?
312
  ASSISTANT:
313
  ```
314
 
 
 
 
 
 
 
 
 
315
 
316
  <!-- original-model-card end -->