TheBloke commited on
Commit
bc1666d
·
1 Parent(s): 2c74fde

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +370 -0
README.md ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ license: llama2
6
+ model_creator: Upstage
7
+ model_link: https://huggingface.co/upstage/Llama-2-70b-instruct-v2
8
+ model_name: Llama 2 70B Instruct v2
9
+ model_type: llama
10
+ pipeline_tag: text-generation
11
+ quantized_by: TheBloke
12
+ tags:
13
+ - upstage
14
+ - llama-2
15
+ - instruct
16
+ - instruction
17
+ ---
18
+
19
+ <!-- header start -->
20
+ <!-- 200823 -->
21
+ <div style="width: auto; margin-left: auto; margin-right: auto">
22
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
23
+ </div>
24
+ <div style="display: flex; justify-content: space-between; width: 100%;">
25
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
27
+ </div>
28
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
+ </div>
31
+ </div>
32
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
33
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
34
+ <!-- header end -->
35
+
36
+ # Llama 2 70B Instruct v2 - GGUF
37
+ - Model creator: [Upstage](https://huggingface.co/Upstage)
38
+ - Original model: [Llama 2 70B Instruct v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)
39
+
40
+ ## Description
41
+
42
+ This repo contains GGUF format model files for [Upstage's Llama 2 70B Instruct v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2).
43
+
44
+ <!-- README_GGUF.md-about-gguf start -->
45
+ ### About GGUF
46
+
47
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
48
+
49
+ The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
50
+
51
+ Here are a list of clients and libraries that are known to support GGUF:
52
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp).
53
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
54
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
55
+ * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
56
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
57
+ * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
58
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
59
+ * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
60
+
61
+ <!-- README_GGUF.md-about-gguf end -->
62
+ <!-- repositories-available start -->
63
+ ## Repositories available
64
+
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF)
67
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGML)
68
+ * [Upstage's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: Orca-Hashes
73
+
74
+ ```
75
+ ### System:
76
+ {system_message}
77
+
78
+ ### User:
79
+ {prompt}
80
+
81
+ ### Assistant:
82
+
83
+ ```
84
+
85
+ <!-- prompt-template end -->
86
+ <!-- compatibility_gguf start -->
87
+ ## Compatibility
88
+
89
+ These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
90
+
91
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
92
+
93
+ ## Explanation of quantisation methods
94
+ <details>
95
+ <summary>Click to see details</summary>
96
+
97
+ The new methods available are:
98
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
99
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
100
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
101
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
102
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
103
+
104
+ Refer to the Provided Files table below to see what files use which methods, and how.
105
+ </details>
106
+ <!-- compatibility_gguf end -->
107
+
108
+ <!-- README_GGUF.md-provided-files start -->
109
+ ## Provided files
110
+
111
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
112
+ | ---- | ---- | ---- | ---- | ---- | ----- |
113
+ | [upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b) | Q6_K | 6 | 19.89 GB| 22.39 GB | very large, extremely low quality loss |
114
+ | [upstage-llama-2-70b-instruct-v2.Q2_K.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
115
+ | [upstage-llama-2-70b-instruct-v2.Q3_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
116
+ | [upstage-llama-2-70b-instruct-v2.Q3_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
117
+ | [upstage-llama-2-70b-instruct-v2.Q3_K_L.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
118
+ | [upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b) | Q8_0 | 8 | 36.59 GB| 39.09 GB | very large, extremely low quality loss - not recommended |
119
+ | [upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a) | Q6_K | 6 | 36.70 GB| 39.20 GB | very large, extremely low quality loss |
120
+ | [upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a) | Q8_0 | 8 | 36.70 GB| 39.20 GB | very large, extremely low quality loss - not recommended |
121
+ | [upstage-llama-2-70b-instruct-v2.Q4_0.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
122
+ | [upstage-llama-2-70b-instruct-v2.Q4_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
123
+ | [upstage-llama-2-70b-instruct-v2.Q4_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
124
+ | [upstage-llama-2-70b-instruct-v2.Q5_0.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
125
+ | [upstage-llama-2-70b-instruct-v2.Q5_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
126
+ | [upstage-llama-2-70b-instruct-v2.Q5_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
127
+ | upstage-llama-2-70b-instruct-v2.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
128
+ | upstage-llama-2-70b-instruct-v2.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
129
+
130
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
131
+
132
+ ### Q6_K and Q8_0 files are split and require joining
133
+
134
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
135
+
136
+ <details>
137
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
138
+
139
+ ### q6_K
140
+ Please download:
141
+ * `upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a`
142
+ * `upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b`
143
+
144
+ ### q8_0
145
+ Please download:
146
+ * `upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a`
147
+ * `upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b`
148
+
149
+ To join the files, do the following:
150
+
151
+ Linux and macOS:
152
+ ```
153
+ cat upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-* > upstage-llama-2-70b-instruct-v2.Q6_K.gguf && rm upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-*
154
+ cat upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-* > upstage-llama-2-70b-instruct-v2.Q8_0.gguf && rm upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-*
155
+ ```
156
+ Windows command line:
157
+ ```
158
+ COPY /B upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a + upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b upstage-llama-2-70b-instruct-v2.Q6_K.gguf
159
+ del upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b
160
+
161
+ COPY /B upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a + upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b upstage-llama-2-70b-instruct-v2.Q8_0.gguf
162
+ del upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b
163
+ ```
164
+
165
+ </details>
166
+ <!-- README_GGUF.md-provided-files end -->
167
+
168
+ <!-- README_GGUF.md-how-to-run start -->
169
+ ## Example `llama.cpp` command
170
+
171
+ Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
172
+
173
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
174
+
175
+ ```
176
+ ./main -t 10 -ngl 32 -m upstage-llama-2-70b-instruct-v2.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\n{system_message}\n\n### User:\n{prompt}\n\n### Assistant:"
177
+ ```
178
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
179
+
180
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
181
+
182
+ Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
183
+
184
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
185
+
186
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
187
+
188
+ ## How to run in `text-generation-webui`
189
+
190
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
191
+
192
+ ## How to run from Python code
193
+
194
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
195
+
196
+ ### How to load this model from Python using ctransformers
197
+
198
+ #### First install the package
199
+
200
+ ```bash
201
+ # Base ctransformers with no GPU acceleration
202
+ pip install ctransformers>=0.2.24
203
+ # Or with CUDA GPU acceleration
204
+ pip install ctransformers[cuda]>=0.2.24
205
+ # Or with ROCm GPU acceleration
206
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
207
+ # Or with Metal GPU acceleration for macOS systems
208
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
209
+ ```
210
+
211
+ #### Simple example code to load one of these GGUF models
212
+
213
+ ```python
214
+ from ctransformers import AutoModelForCausalLM
215
+
216
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
217
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF", model_file="upstage-llama-2-70b-instruct-v2.q4_K_M.gguf", model_type="llama", gpu_layers=50)
218
+
219
+ print(llm("AI is going to"))
220
+ ```
221
+
222
+ ## How to use with LangChain
223
+
224
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
225
+
226
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
227
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
228
+
229
+ <!-- README_GGUF.md-how-to-run end -->
230
+
231
+ <!-- footer start -->
232
+ <!-- 200823 -->
233
+ ## Discord
234
+
235
+ For further support, and discussions on these models and AI in general, join us at:
236
+
237
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
238
+
239
+ ## Thanks, and how to contribute.
240
+
241
+ Thanks to the [chirper.ai](https://chirper.ai) team!
242
+
243
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
244
+
245
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
246
+
247
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
248
+
249
+ * Patreon: https://patreon.com/TheBlokeAI
250
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
251
+
252
+ **Special thanks to**: Aemon Algiz.
253
+
254
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
255
+
256
+
257
+ Thank you to all my generous patrons and donaters!
258
+
259
+ And thank you again to a16z for their generous grant.
260
+
261
+ <!-- footer end -->
262
+
263
+ <!-- original-model-card start -->
264
+ # Original model card: Upstage's Llama 2 70B Instruct v2
265
+
266
+ # SOLAR-0-70b-16bit model card
267
+ The model name has been changed from LLaMa-2-70b-instruct-v2 to SOLAR-0-70b-16bit
268
+
269
+ ## Model Details
270
+
271
+ * **Developed by**: [Upstage](https://en.upstage.ai)
272
+ * **Backbone Model**: [LLaMA-2](https://github.com/facebookresearch/llama/tree/main)
273
+ * **Language(s)**: English
274
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
275
+ * **License**: Fine-tuned checkpoints is licensed under the Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
276
+ * **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/Llama-2-70b-instruct-v2/discussions)
277
+ * **Contact**: For questions and comments about the model, please email [[email protected]](mailto:[email protected])
278
+
279
+ ## Dataset Details
280
+
281
+ ### Used Datasets
282
+ - Orca-style dataset
283
+ - Alpaca-style dataset
284
+ - No other dataset was used except for the dataset mentioned above
285
+ - No benchmark test set or the training set are used
286
+
287
+
288
+ ### Prompt Template
289
+ ```
290
+ ### System:
291
+ {System}
292
+
293
+ ### User:
294
+ {User}
295
+
296
+ ### Assistant:
297
+ {Assistant}
298
+ ```
299
+
300
+ ## Usage
301
+
302
+ - The followings are tested on A100 80GB
303
+ - Our model can handle up to 10k+ input tokens, thanks to the `rope_scaling` option
304
+
305
+ ```python
306
+ import torch
307
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
308
+
309
+ tokenizer = AutoTokenizer.from_pretrained("upstage/Llama-2-70b-instruct-v2")
310
+ model = AutoModelForCausalLM.from_pretrained(
311
+ "upstage/Llama-2-70b-instruct-v2",
312
+ device_map="auto",
313
+ torch_dtype=torch.float16,
314
+ load_in_8bit=True,
315
+ rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
316
+ )
317
+
318
+ prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
319
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
320
+ del inputs["token_type_ids"]
321
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
322
+
323
+ output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
324
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
325
+ ```
326
+
327
+ ## Hardware and Software
328
+
329
+ * **Hardware**: We utilized an A100x8 * 4 for training our model
330
+ * **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)
331
+
332
+ ## Evaluation Results
333
+
334
+ ### Overview
335
+ - We conducted a performance evaluation following the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
336
+ We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
337
+ We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463).
338
+ - We used [MT-bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge), a set of challenging multi-turn open-ended questions, to evaluate the models
339
+
340
+ ### Main Results
341
+ | Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
342
+ |--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
343
+ | **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(***Ours***, ***Open LLM Leaderboard***) | **73** | **71.1** | **87.9** | **70.6** | **62.2** | | **7.44063** |
344
+ | [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | 69.8 | 61 | | 7.24375 |
345
+ | [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
346
+ | Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | 69.8 | 44.9 | | |
347
+ | [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (Ours, Open LLM Leaderboard) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
348
+ | [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | |
349
+ | llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
350
+ | falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
351
+
352
+ ### Scripts for H4 Score Reproduction
353
+ - Prepare evaluation environments:
354
+ ```
355
+ # clone the repository
356
+ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
357
+ # check out the specific commit
358
+ git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
359
+ # change to the repository directory
360
+ cd lm-evaluation-harness
361
+ ```
362
+
363
+ ## Contact Us
364
+
365
+ ### About Upstage
366
+ - [Upstage](https://en.upstage.ai) is a company specialized in Large Language Models (LLMs) and AI. We will help you build private LLMs and related applications.
367
+ If you have a dataset to build domain specific LLMs or make LLM applications, please contact us at ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm)
368
+ - As of August 1st, our 70B model has reached the top spot in openLLM rankings, marking itself as the current leading performer globally.
369
+
370
+ <!-- original-model-card end -->