Update README.md
Browse files
README.md
CHANGED
@@ -34,6 +34,13 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
|
|
34 |
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML)
|
35 |
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-HF)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
<!-- compatibility_ggml start -->
|
38 |
## Compatibility
|
39 |
|
@@ -65,15 +72,15 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
65 |
## Provided files
|
66 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
67 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
68 |
-
| .ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB | 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
69 |
-
| .ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB | 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
70 |
-
| .ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB | 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
71 |
-
| .ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB | 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
72 |
-
| .ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB | 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
73 |
-
| .ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB | 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
74 |
-
| .ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB | 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
75 |
-
| .ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB | 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
76 |
-
| .ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
|
77 |
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. |
|
78 |
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
79 |
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
@@ -88,7 +95,7 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
88 |
I use the following command line; adjust for your tastes and needs:
|
89 |
|
90 |
```
|
91 |
-
./main -t 10 -ngl 32 -m .ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
|
92 |
```
|
93 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
94 |
|
|
|
34 |
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML)
|
35 |
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-HF)
|
36 |
|
37 |
+
## Prompt template
|
38 |
+
|
39 |
+
```
|
40 |
+
USER: prompt goes here
|
41 |
+
ASSISTANT:
|
42 |
+
```
|
43 |
+
|
44 |
<!-- compatibility_ggml start -->
|
45 |
## Compatibility
|
46 |
|
|
|
72 |
## Provided files
|
73 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
74 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
75 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB | 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
76 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB | 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
77 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB | 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
78 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB | 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
79 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB | 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
80 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB | 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
81 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB | 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
82 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB | 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
83 |
+
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
|
84 |
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. |
|
85 |
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
86 |
| Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
|
|
95 |
I use the following command line; adjust for your tastes and needs:
|
96 |
|
97 |
```
|
98 |
+
./main -t 10 -ngl 32 -m Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
|
99 |
```
|
100 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
101 |
|