TheBloke commited on
Commit
8d0dee1
·
1 Parent(s): 0ca1cd7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +262 -0
README.md ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/ehartford/WizardLM-7B-Uncensored
3
+ datasets:
4
+ - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
5
+ inference: false
6
+ license: other
7
+ model_creator: Eric Hartford
8
+ model_name: Wizardlm 7B Uncensored
9
+ model_type: llama
10
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
11
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
12
+ USER: {prompt} ASSISTANT:
13
+
14
+ '
15
+ quantized_by: TheBloke
16
+ tags:
17
+ - uncensored
18
+ ---
19
+
20
+ <!-- header start -->
21
+ <!-- 200823 -->
22
+ <div style="width: auto; margin-left: auto; margin-right: auto">
23
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
24
+ </div>
25
+ <div style="display: flex; justify-content: space-between; width: 100%;">
26
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
28
+ </div>
29
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
31
+ </div>
32
+ </div>
33
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
34
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
35
+ <!-- header end -->
36
+
37
+ # Wizardlm 7B Uncensored - AWQ
38
+ - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
39
+ - Original model: [Wizardlm 7B Uncensored](https://huggingface.co/ehartford/WizardLM-7B-Uncensored)
40
+
41
+ <!-- description start -->
42
+ ## Description
43
+
44
+ This repo contains AWQ model files for [Eric Hartford's Wizardlm 7B Uncensored](https://huggingface.co/ehartford/WizardLM-7B-Uncensored).
45
+
46
+
47
+ ### About AWQ
48
+
49
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
50
+
51
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
52
+ <!-- description end -->
53
+ <!-- repositories-available start -->
54
+ ## Repositories available
55
+
56
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-AWQ)
57
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GPTQ)
58
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGUF)
59
+ * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-7B-Uncensored)
60
+ <!-- repositories-available end -->
61
+
62
+ <!-- prompt-template start -->
63
+ ## Prompt template: Vicuna
64
+
65
+ ```
66
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
67
+
68
+ ```
69
+
70
+ <!-- prompt-template end -->
71
+ <!-- licensing start -->
72
+ ## Licensing
73
+
74
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
75
+
76
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
77
+
78
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Eric Hartford's Wizardlm 7B Uncensored](https://huggingface.co/ehartford/WizardLM-7B-Uncensored).
79
+ <!-- licensing end -->
80
+ <!-- README_AWQ.md-provided-files start -->
81
+ ## Provided files and AWQ parameters
82
+
83
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
84
+
85
+ Models are released as sharded safetensors files.
86
+
87
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
88
+ | ------ | ---- | -- | ----------- | ------- | ---- |
89
+ | [main](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.89 GB
90
+
91
+ <!-- README_AWQ.md-provided-files end -->
92
+
93
+ <!-- README_AWQ.md-use-from-vllm start -->
94
+ ## Serving this model from vLLM
95
+
96
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
97
+
98
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
99
+
100
+ ```shell
101
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/WizardLM-7B-uncensored-AWQ --quantization awq
102
+ ```
103
+
104
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
105
+
106
+ ```python
107
+ from vllm import LLM, SamplingParams
108
+
109
+ prompts = [
110
+ "Hello, my name is",
111
+ "The president of the United States is",
112
+ "The capital of France is",
113
+ "The future of AI is",
114
+ ]
115
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
116
+
117
+ llm = LLM(model="TheBloke/WizardLM-7B-uncensored-AWQ", quantization="awq")
118
+
119
+ outputs = llm.generate(prompts, sampling_params)
120
+
121
+ # Print the outputs.
122
+ for output in outputs:
123
+ prompt = output.prompt
124
+ generated_text = output.outputs[0].text
125
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
126
+ ```
127
+ <!-- README_AWQ.md-use-from-vllm start -->
128
+
129
+ <!-- README_AWQ.md-use-from-python start -->
130
+ ## How to use this AWQ model from Python code
131
+
132
+ ### Install the necessary packages
133
+
134
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
135
+
136
+ ```shell
137
+ pip3 install autoawq
138
+ ```
139
+
140
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
141
+
142
+ ```shell
143
+ pip3 uninstall -y autoawq
144
+ git clone https://github.com/casper-hansen/AutoAWQ
145
+ cd AutoAWQ
146
+ pip3 install .
147
+ ```
148
+
149
+ ### You can then try the following example code
150
+
151
+ ```python
152
+ from awq import AutoAWQForCausalLM
153
+ from transformers import AutoTokenizer
154
+
155
+ model_name_or_path = "TheBloke/WizardLM-7B-uncensored-AWQ"
156
+
157
+ # Load model
158
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
159
+ trust_remote_code=False, safetensors=True)
160
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
161
+
162
+ prompt = "Tell me about AI"
163
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
164
+
165
+ '''
166
+
167
+ print("\n\n*** Generate:")
168
+
169
+ tokens = tokenizer(
170
+ prompt_template,
171
+ return_tensors='pt'
172
+ ).input_ids.cuda()
173
+
174
+ # Generate output
175
+ generation_output = model.generate(
176
+ tokens,
177
+ do_sample=True,
178
+ temperature=0.7,
179
+ top_p=0.95,
180
+ top_k=40,
181
+ max_new_tokens=512
182
+ )
183
+
184
+ print("Output: ", tokenizer.decode(generation_output[0]))
185
+
186
+ # Inference can also be done using transformers' pipeline
187
+ from transformers import pipeline
188
+
189
+ print("*** Pipeline:")
190
+ pipe = pipeline(
191
+ "text-generation",
192
+ model=model,
193
+ tokenizer=tokenizer,
194
+ max_new_tokens=512,
195
+ do_sample=True,
196
+ temperature=0.7,
197
+ top_p=0.95,
198
+ top_k=40,
199
+ repetition_penalty=1.1
200
+ )
201
+
202
+ print(pipe(prompt_template)[0]['generated_text'])
203
+ ```
204
+ <!-- README_AWQ.md-use-from-python end -->
205
+
206
+ <!-- README_AWQ.md-compatibility start -->
207
+ ## Compatibility
208
+
209
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
210
+
211
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
212
+ <!-- README_AWQ.md-compatibility end -->
213
+
214
+ <!-- footer start -->
215
+ <!-- 200823 -->
216
+ ## Discord
217
+
218
+ For further support, and discussions on these models and AI in general, join us at:
219
+
220
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
221
+
222
+ ## Thanks, and how to contribute
223
+
224
+ Thanks to the [chirper.ai](https://chirper.ai) team!
225
+
226
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
227
+
228
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
229
+
230
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
231
+
232
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
233
+
234
+ * Patreon: https://patreon.com/TheBlokeAI
235
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
236
+
237
+ **Special thanks to**: Aemon Algiz.
238
+
239
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
240
+
241
+
242
+ Thank you to all my generous patrons and donaters!
243
+
244
+ And thank you again to a16z for their generous grant.
245
+
246
+ <!-- footer end -->
247
+
248
+ # Original model card: Eric Hartford's Wizardlm 7B Uncensored
249
+
250
+ This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
251
+
252
+ Shout out to the open source AI/ML community, and everyone who helped me out.
253
+
254
+ Note:
255
+
256
+ An uncensored model has no guardrails.
257
+
258
+ You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
259
+
260
+ Publishing anything this model generates is the same as publishing it yourself.
261
+
262
+ You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.