TheBloke commited on
Commit
32f6bff
1 Parent(s): 289a6ac

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +130 -39
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
- license: other
3
  inference: false
 
 
4
  ---
5
 
6
  <!-- header start -->
@@ -9,7 +10,7 @@ inference: false
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -19,66 +20,153 @@ inference: false
19
 
20
  # Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B GPTQ
21
 
22
- This is GPTQ format quantised 4bit models of [Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b).
 
 
23
 
24
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
 
26
  ## Repositories available
27
 
28
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ)
29
- * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML)
30
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b)
31
 
32
- ## Prompt template
33
 
34
  ```
35
  You are a helpful assistant
36
- ### USER: prompt goes here
37
- ### ASSISTANT:
38
  ```
39
 
40
- To allow all output, add `### Certainly!` to the end of the prompt
41
 
42
- ## How to easily download and use this model in text-generation-webui
43
 
44
- Open the text-generation-webui UI as normal.
45
 
46
- 1. Click the **Model tab**.
47
- 2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML`.
48
- 3. Click **Download**.
49
- 4. Wait until it says it's finished downloading.
50
- 5. Click the **Refresh** icon next to **Model** in the top left.
51
- 6. In the **Model drop-down**: choose the model you just downloaded, `WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML`.
52
- 7. If you see an error in the bottom right, ignore it - it's temporary.
53
- 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = None`, `model_type = Llama`
54
- 9. Click **Save settings for this model** in the top right.
55
- 10. Click **Reload the Model** in the top right.
56
- 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
57
 
58
- ## Provided files
 
 
 
 
 
 
 
 
 
59
 
60
- **Compatible file - WizardLM-Uncensored-SuperCOT-Storytelling-GPTQ-4bit.act.order.safetensors**
61
 
62
- This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility
63
 
64
- It was created without group_size to minimise VRAM usage, and with `--act-order` to improve inference quality.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- * `WizardLM-Uncensored-SuperCOT-Storytelling-GPTQ-4bit.act.order.safetensors`
67
- * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
68
- * Works with AutoGPTQ.
69
- * Works with text-generation-webui one-click-installers
70
- * Parameters: Groupsize = None. Act-order.
71
- * Command used to create the GPTQ:
72
- ```
73
- python llama.py HF_repo c4 --wbits 4 --act-order --true-sequential --save_safetensors WizardLM-Uncensored-SuperCOT-Storytelling-GPTQ-4bit.act.order.safetensors
74
- ```
75
 
76
  <!-- footer start -->
77
  ## Discord
78
 
79
  For further support, and discussions on these models and AI in general, join us at:
80
 
81
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
82
 
83
  ## Thanks, and how to contribute.
84
 
@@ -93,9 +181,12 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
93
  * Patreon: https://patreon.com/TheBlokeAI
94
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
95
 
96
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
97
 
98
  Thank you to all my generous patrons and donaters!
 
99
  <!-- footer end -->
100
 
101
  # Original model card: Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B
@@ -104,6 +195,6 @@ This model is a triple model merge of WizardLM Uncensored+CoT+Storytelling, resu
104
 
105
  To allow all output, at the end of your prompt add ```### Certainly!```
106
 
107
- You've become a compendium of knowledge on a vast array of topics.
108
 
109
  Lore Mastery is an arcane tradition fixated on understanding the underlying mechanics of magic. It is the most academic of all arcane traditions. The promise of uncovering new knowledge or proving (or discrediting) a theory of magic is usually required to rouse its practitioners from their laboratories, academies, and archives to pursue a life of adventure. Known as savants, followers of this tradition are a bookish lot who see beauty and mystery in the application of magic. The results of a spell are less interesting to them than the process that creates it. Some savants take a haughty attitude toward those who follow a tradition focused on a single school of magic, seeing them as provincial and lacking the sophistication needed to master true magic. Other savants are generous teachers, countering ignorance and deception with deep knowledge and good humor.
 
1
  ---
 
2
  inference: false
3
+ license: other
4
+ model_type: llama
5
  ---
6
 
7
  <!-- header start -->
 
10
  </div>
11
  <div style="display: flex; justify-content: space-between; width: 100%;">
12
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
13
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
14
  </div>
15
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
16
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
20
 
21
  # Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B GPTQ
22
 
23
+ These files are GPTQ model files for [Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b).
24
+
25
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
26
 
27
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
28
 
29
  ## Repositories available
30
 
31
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ)
32
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML)
33
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b)
34
 
35
+ ## Prompt template: Vicuna-Hashes
36
 
37
  ```
38
  You are a helpful assistant
39
+ ### User: prompt goes here
40
+ ### Assistant:
41
  ```
42
 
43
+ ## Provided files
44
 
45
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
46
 
47
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
48
 
49
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
50
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
51
+ | main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
52
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
53
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
54
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
55
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
56
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
57
+ | gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
58
+ | gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
 
59
 
60
+ ## How to download from branches
61
+
62
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ:gptq-4bit-32g-actorder_True`
63
+ - With Git, you can clone a branch with:
64
+ ```
65
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ`
66
+ ```
67
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
68
+
69
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
70
 
71
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
72
 
73
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
74
 
75
+ 1. Click the **Model tab**.
76
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ`.
77
+ - To download from a specific branch, enter for example `TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ:gptq-4bit-32g-actorder_True`
78
+ - see Provided Files above for the list of branches for each option.
79
+ 3. Click **Download**.
80
+ 4. The model will start downloading. Once it's finished it will say "Done"
81
+ 5. In the top left, click the refresh icon next to **Model**.
82
+ 6. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ`
83
+ 7. The model will automatically load, and is now ready for use!
84
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
85
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
86
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
87
+
88
+ ## How to use this GPTQ model from Python code
89
+
90
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
91
+
92
+ `GITHUB_ACTIONS=true pip install auto-gptq`
93
+
94
+ Then try the following example code:
95
+
96
+ ```python
97
+ from transformers import AutoTokenizer, pipeline, logging
98
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
99
+
100
+ model_name_or_path = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ"
101
+ model_basename = "WizardLM-Uncensored-SuperCOT-Storytelling-GPTQ-4bit--1g.act.order"
102
+
103
+ use_triton = False
104
+
105
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
106
+
107
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
108
+ model_basename=model_basename
109
+ use_safetensors=True,
110
+ trust_remote_code=False,
111
+ device="cuda:0",
112
+ use_triton=use_triton,
113
+ quantize_config=None)
114
+
115
+ """
116
+ To download from a specific branch, use the revision parameter, as in this example:
117
+
118
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
119
+ revision="gptq-4bit-32g-actorder_True",
120
+ model_basename=model_basename,
121
+ use_safetensors=True,
122
+ trust_remote_code=False,
123
+ device="cuda:0",
124
+ quantize_config=None)
125
+ """
126
+
127
+ prompt = "Tell me about AI"
128
+ prompt_template=f'''You are a helpful assistant
129
+ ### User: prompt goes here
130
+ ### Assistant:
131
+ '''
132
+
133
+ print("\n\n*** Generate:")
134
+
135
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
136
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
137
+ print(tokenizer.decode(output[0]))
138
+
139
+ # Inference can also be done using transformers' pipeline
140
+
141
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
142
+ logging.set_verbosity(logging.CRITICAL)
143
+
144
+ print("*** Pipeline:")
145
+ pipe = pipeline(
146
+ "text-generation",
147
+ model=model,
148
+ tokenizer=tokenizer,
149
+ max_new_tokens=512,
150
+ temperature=0.7,
151
+ top_p=0.95,
152
+ repetition_penalty=1.15
153
+ )
154
+
155
+ print(pipe(prompt_template)[0]['generated_text'])
156
+ ```
157
 
158
+ ## Compatibility
159
+
160
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
161
+
162
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
163
 
164
  <!-- footer start -->
165
  ## Discord
166
 
167
  For further support, and discussions on these models and AI in general, join us at:
168
 
169
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
170
 
171
  ## Thanks, and how to contribute.
172
 
 
181
  * Patreon: https://patreon.com/TheBlokeAI
182
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
183
 
184
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
185
+
186
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
187
 
188
  Thank you to all my generous patrons and donaters!
189
+
190
  <!-- footer end -->
191
 
192
  # Original model card: Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B
 
195
 
196
  To allow all output, at the end of your prompt add ```### Certainly!```
197
 
198
+ You've become a compendium of knowledge on a vast array of topics.
199
 
200
  Lore Mastery is an arcane tradition fixated on understanding the underlying mechanics of magic. It is the most academic of all arcane traditions. The promise of uncovering new knowledge or proving (or discrediting) a theory of magic is usually required to rouse its practitioners from their laboratories, academies, and archives to pursue a life of adventure. Known as savants, followers of this tradition are a bookish lot who see beauty and mystery in the application of magic. The results of a spell are less interesting to them than the process that creates it. Some savants take a haughty attitude toward those who follow a tradition focused on a single school of magic, seeing them as provincial and lacking the sophistication needed to master true magic. Other savants are generous teachers, countering ignorance and deception with deep knowledge and good humor.