TheBloke commited on
Commit
9a17124
1 Parent(s): 4d85013

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +461 -0
README.md ADDED
@@ -0,0 +1,461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: adamo1139/Yi-34B-200K-AEZAKMI-v2
3
+ datasets:
4
+ - adamo1139/AEZAKMI_v2
5
+ inference: false
6
+ license: other
7
+ license_link: LICENSE
8
+ license_name: yi-license
9
+ model_creator: Adam
10
+ model_name: Yi 34B 200K Aezakmi v2
11
+ model_type: yi
12
+ prompt_template: '<|im_start|>system
13
+
14
+ {system_message}<|im_end|>
15
+
16
+ <|im_start|>user
17
+
18
+ {prompt}<|im_end|>
19
+
20
+ <|im_start|>assistant
21
+
22
+ '
23
+ quantized_by: TheBloke
24
+ tags:
25
+ - llm
26
+ - fine-tune
27
+ - yi
28
+ ---
29
+ <!-- markdownlint-disable MD041 -->
30
+
31
+ <!-- header start -->
32
+ <!-- 200823 -->
33
+ <div style="width: auto; margin-left: auto; margin-right: auto">
34
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
35
+ </div>
36
+ <div style="display: flex; justify-content: space-between; width: 100%;">
37
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
39
+ </div>
40
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
42
+ </div>
43
+ </div>
44
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
45
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
46
+ <!-- header end -->
47
+
48
+ # Yi 34B 200K Aezakmi v2 - AWQ
49
+ - Model creator: [Adam](https://huggingface.co/adamo1139)
50
+ - Original model: [Yi 34B 200K Aezakmi v2](https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2)
51
+
52
+ <!-- description start -->
53
+ ## Description
54
+
55
+ This repo contains AWQ model files for [Adam's Yi 34B 200K Aezakmi v2](https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2).
56
+
57
+
58
+ ### About AWQ
59
+
60
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
61
+
62
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
63
+
64
+ It is supported by:
65
+
66
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
67
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
68
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
69
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
70
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
71
+
72
+ <!-- description end -->
73
+ <!-- repositories-available start -->
74
+ ## Repositories available
75
+
76
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ)
77
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-GPTQ)
78
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-GGUF)
79
+ * [Adam's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2)
80
+ <!-- repositories-available end -->
81
+
82
+ <!-- prompt-template start -->
83
+ ## Prompt template: ChatML
84
+
85
+ ```
86
+ <|im_start|>system
87
+ {system_message}<|im_end|>
88
+ <|im_start|>user
89
+ {prompt}<|im_end|>
90
+ <|im_start|>assistant
91
+
92
+ ```
93
+
94
+ <!-- prompt-template end -->
95
+
96
+
97
+ <!-- README_AWQ.md-provided-files start -->
98
+ ## Provided files, and AWQ parameters
99
+
100
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
101
+
102
+ Models are released as sharded safetensors files.
103
+
104
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
105
+ | ------ | ---- | -- | ----------- | ------- | ---- |
106
+ | [main](https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 19.23 GB
107
+
108
+ <!-- README_AWQ.md-provided-files end -->
109
+
110
+ <!-- README_AWQ.md-text-generation-webui start -->
111
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
112
+
113
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
114
+
115
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
116
+
117
+ 1. Click the **Model tab**.
118
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ`.
119
+ 3. Click **Download**.
120
+ 4. The model will start downloading. Once it's finished it will say "Done".
121
+ 5. In the top left, click the refresh icon next to **Model**.
122
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-200K-AEZAKMI-v2-AWQ`
123
+ 7. Select **Loader: AutoAWQ**.
124
+ 8. Click Load, and the model will load and is now ready for use.
125
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
126
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
127
+ <!-- README_AWQ.md-text-generation-webui end -->
128
+
129
+ <!-- README_AWQ.md-use-from-vllm start -->
130
+ ## Multi-user inference server: vLLM
131
+
132
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
133
+
134
+ - Please ensure you are using vLLM version 0.2 or later.
135
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
136
+
137
+ For example:
138
+
139
+ ```shell
140
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ --quantization awq --dtype auto
141
+ ```
142
+
143
+ - When using vLLM from Python code, again set `quantization=awq`.
144
+
145
+ For example:
146
+
147
+ ```python
148
+ from vllm import LLM, SamplingParams
149
+
150
+ prompts = [
151
+ "Tell me about AI",
152
+ "Write a story about llamas",
153
+ "What is 291 - 150?",
154
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
155
+ ]
156
+ prompt_template=f'''<|im_start|>system
157
+ {system_message}<|im_end|>
158
+ <|im_start|>user
159
+ {prompt}<|im_end|>
160
+ <|im_start|>assistant
161
+ '''
162
+
163
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
164
+
165
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
166
+
167
+ llm = LLM(model="TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ", quantization="awq", dtype="auto")
168
+
169
+ outputs = llm.generate(prompts, sampling_params)
170
+
171
+ # Print the outputs.
172
+ for output in outputs:
173
+ prompt = output.prompt
174
+ generated_text = output.outputs[0].text
175
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
176
+ ```
177
+ <!-- README_AWQ.md-use-from-vllm start -->
178
+
179
+ <!-- README_AWQ.md-use-from-tgi start -->
180
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
181
+
182
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
183
+
184
+ Example Docker parameters:
185
+
186
+ ```shell
187
+ --model-id TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
188
+ ```
189
+
190
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
191
+
192
+ ```shell
193
+ pip3 install huggingface-hub
194
+ ```
195
+
196
+ ```python
197
+ from huggingface_hub import InferenceClient
198
+
199
+ endpoint_url = "https://your-endpoint-url-here"
200
+
201
+ prompt = "Tell me about AI"
202
+ prompt_template=f'''<|im_start|>system
203
+ {system_message}<|im_end|>
204
+ <|im_start|>user
205
+ {prompt}<|im_end|>
206
+ <|im_start|>assistant
207
+ '''
208
+
209
+ client = InferenceClient(endpoint_url)
210
+ response = client.text_generation(prompt,
211
+ max_new_tokens=128,
212
+ do_sample=True,
213
+ temperature=0.7,
214
+ top_p=0.95,
215
+ top_k=40,
216
+ repetition_penalty=1.1)
217
+
218
+ print(f"Model output: ", response)
219
+ ```
220
+ <!-- README_AWQ.md-use-from-tgi end -->
221
+
222
+ <!-- README_AWQ.md-use-from-python start -->
223
+ ## Inference from Python code using Transformers
224
+
225
+ ### Install the necessary packages
226
+
227
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
228
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
229
+
230
+ ```shell
231
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
232
+ ```
233
+
234
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
235
+
236
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
237
+
238
+ ```shell
239
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
240
+ ```
241
+
242
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
243
+
244
+ ```shell
245
+ pip3 uninstall -y autoawq
246
+ git clone https://github.com/casper-hansen/AutoAWQ
247
+ cd AutoAWQ
248
+ pip3 install .
249
+ ```
250
+
251
+ ### Transformers example code (requires Transformers 4.35.0 and later)
252
+
253
+ ```python
254
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
255
+
256
+ model_name_or_path = "TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ"
257
+
258
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
259
+ model = AutoModelForCausalLM.from_pretrained(
260
+ model_name_or_path,
261
+ low_cpu_mem_usage=True,
262
+ device_map="cuda:0"
263
+ )
264
+
265
+ # Using the text streamer to stream output one token at a time
266
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
267
+
268
+ prompt = "Tell me about AI"
269
+ prompt_template=f'''<|im_start|>system
270
+ {system_message}<|im_end|>
271
+ <|im_start|>user
272
+ {prompt}<|im_end|>
273
+ <|im_start|>assistant
274
+ '''
275
+
276
+ # Convert prompt to tokens
277
+ tokens = tokenizer(
278
+ prompt_template,
279
+ return_tensors='pt'
280
+ ).input_ids.cuda()
281
+
282
+ generation_params = {
283
+ "do_sample": True,
284
+ "temperature": 0.7,
285
+ "top_p": 0.95,
286
+ "top_k": 40,
287
+ "max_new_tokens": 512,
288
+ "repetition_penalty": 1.1
289
+ }
290
+
291
+ # Generate streamed output, visible one token at a time
292
+ generation_output = model.generate(
293
+ tokens,
294
+ streamer=streamer,
295
+ **generation_params
296
+ )
297
+
298
+ # Generation without a streamer, which will include the prompt in the output
299
+ generation_output = model.generate(
300
+ tokens,
301
+ **generation_params
302
+ )
303
+
304
+ # Get the tokens from the output, decode them, print them
305
+ token_output = generation_output[0]
306
+ text_output = tokenizer.decode(token_output)
307
+ print("model.generate output: ", text_output)
308
+
309
+ # Inference is also possible via Transformers' pipeline
310
+ from transformers import pipeline
311
+
312
+ pipe = pipeline(
313
+ "text-generation",
314
+ model=model,
315
+ tokenizer=tokenizer,
316
+ **generation_params
317
+ )
318
+
319
+ pipe_output = pipe(prompt_template)[0]['generated_text']
320
+ print("pipeline output: ", pipe_output)
321
+
322
+ ```
323
+ <!-- README_AWQ.md-use-from-python end -->
324
+
325
+ <!-- README_AWQ.md-compatibility start -->
326
+ ## Compatibility
327
+
328
+ The files provided are tested to work with:
329
+
330
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
331
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
332
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
333
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
334
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
335
+
336
+ <!-- README_AWQ.md-compatibility end -->
337
+
338
+ <!-- footer start -->
339
+ <!-- 200823 -->
340
+ ## Discord
341
+
342
+ For further support, and discussions on these models and AI in general, join us at:
343
+
344
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
345
+
346
+ ## Thanks, and how to contribute
347
+
348
+ Thanks to the [chirper.ai](https://chirper.ai) team!
349
+
350
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
351
+
352
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
353
+
354
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
355
+
356
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
357
+
358
+ * Patreon: https://patreon.com/TheBlokeAI
359
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
360
+
361
+ **Special thanks to**: Aemon Algiz.
362
+
363
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
364
+
365
+
366
+ Thank you to all my generous patrons and donaters!
367
+
368
+ And thank you again to a16z for their generous grant.
369
+
370
+ <!-- footer end -->
371
+
372
+ # Original model card: Adam's Yi 34B 200K Aezakmi v2
373
+
374
+
375
+ ## Model description
376
+
377
+ Yi-34B 200K base model fine-tuned on AEZAKMI v2 dataset. Training took around 25 hours on single local RTX 3090 Ti.
378
+ It's like airoboros but with less gptslop, no refusals and less typical language used by RLHFed OpenAI models.
379
+ Say goodbye to "It's important to remember"! \
380
+ Prompt format is standard chatml. Don't expect it to be good at math, riddles or be crazy smart. My end goal with AEZAKMI is to create a cozy free chatbot.
381
+ Cost of this fine-tune is about $10 in electricity. It took me 3 tries to get it right.
382
+ Base model used for fine-tuning was 200k context Yi-34B-Llama model shared by larryvrh.
383
+
384
+ I had to lower max_positional_embeddings in config.json and model_max_length for training to start, otherwise I was OOMing straight away.
385
+ My first attempt had max_positional_embeddings set to 16384 and model_max_length set to 200000. This allowed fine-tuning to finish, but that model was broken after applying LoRA and merging it. \
386
+ This attempt had both max_position_embeddings and model_max_length set to 4096, which worked perfectly fine.
387
+
388
+ ## Prompt Format
389
+
390
+ I recommend using ChatML format, as this was used during fine-tune. \
391
+ Here's a prompt format you should use, you can set a different system message, model seems to respect that fine, so it wasn't overfitted.
392
+
393
+ ```
394
+ <|im_start|>system
395
+ A chat with uncensored assistant.<|im_end|>
396
+ <|im_start|>user
397
+ {prompt}<|im_end|>
398
+ <|im_start|>assistant
399
+ ```
400
+
401
+ ## Intended uses & limitations
402
+
403
+ Use is limited by Yi license.
404
+
405
+ ## Known Issues
406
+
407
+ I recommend to set repetition penalty to something around 1.05 to avoid repetition. So far I had good experience running this model with temperature 1.2.
408
+ Stories have ChatGPT like paragraph spacing, I will work on this in the future maybe, not a high priority
409
+
410
+ Unrestricted-ness of the v2 isn't quite something that I am happy with yet, especially using prompt "A chat.". \
411
+ With a slightly modifed prompt it works much better, I recommend using "A chat with uncensored assistant.", it's stupid but it helps a lot. \
412
+ Base Yi-34B model is contaminated with refusals and this contaminates all models trained on Yi-34B \
413
+ My next project is to attempt to de-contaminate base Yi-34B 4K and Yi-34B 200K using DPO with preferred data coming from uncontaminated raw models. I plan to release that dataset openly.
414
+
415
+ I was made aware of the frequent occurrence of the phrase "sending shivers down a spine" in the generations during RP of v1, so I fixed those samples - it should be better now. \
416
+ I can hold up to 24000 ctx with 4.65bpw exl2 version and 8-bit cache - long context should work as good as other models trained on 200k version of Yi-34B \
417
+ There is also some issue with handling long system messages for RP, I was planning to investigate it for v2 but I didn't.
418
+
419
+
420
+ ## Axolotl training parameters
421
+
422
+ - bnb_4bit_use_double_quant: true
423
+ - is_llama_derived_model: true
424
+ - load_in_4bit: true
425
+ - adapter: qlora
426
+ - sequence_len: 1400
427
+ - sample_packing: true
428
+ - lora_r: 16
429
+ - lora_alpha: 32
430
+ - lora_target_modules:
431
+ - q_proj
432
+ - v_proj
433
+ - k_proj
434
+ - o_proj
435
+ - gate_proj
436
+ - down_proj
437
+ - up_proj
438
+ - lora_target_linear: true
439
+ - pad_to_sequence_len: false
440
+ - micro_batch_size: 1
441
+ - gradient_accumulation_steps: 1
442
+ - num_epochs: 2.4
443
+ - optimizer: adamw_bnb_8bit
444
+ - lr_scheduler: constant
445
+ - learning_rate: 0.00005
446
+ - train_on_inputs: false
447
+ - group_by_length: false
448
+ - bf16: true
449
+ - bfloat16: true
450
+ - flash_optimum: false
451
+ - gradient_checkpointing: true
452
+ - flash_attention: true
453
+ - seed: 42
454
+
455
+
456
+ ## Upcoming
457
+
458
+ I will probably be working on de-contaminating base Yi-34B model now. \
459
+ My second run of AEZAKMI v2 fine-tune was just 0.15 epochs and I really like how natural this model is and how rich is it's vocabulary. I will try to train less to hit the sweetspot. \
460
+ I will be uploading LoRA adapter for that second run that was just 0.15 epochs. \
461
+ I believe that I might have gotten what I want if I would have stopped training sooner. I don't have checkpoints older than 1500 steps back so I would need to re-run training to get it back.