TheBloke commited on
Commit
5777aef
·
1 Parent(s): bb1953d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +432 -0
README.md ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: 01-ai/Yi-34B-200K
3
+ inference: false
4
+ license: other
5
+ license_link: LICENSE
6
+ license_name: yi-license
7
+ model_creator: 01-ai
8
+ model_name: Yi 34B 200K
9
+ model_type: yi
10
+ prompt_template: '{prompt}
11
+
12
+ '
13
+ quantized_by: TheBloke
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+
34
+ # Yi 34B 200K - AWQ
35
+ - Model creator: [01-ai](https://huggingface.co/01-ai)
36
+ - Original model: [Yi 34B 200K](https://huggingface.co/01-ai/Yi-34B-200K)
37
+
38
+ <!-- description start -->
39
+ ## Description
40
+
41
+ This repo contains AWQ model files for [01-ai's Yi 34B 200K](https://huggingface.co/01-ai/Yi-34B-200K).
42
+
43
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
44
+
45
+
46
+ ### About AWQ
47
+
48
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
49
+
50
+ It is supported by:
51
+
52
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
53
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
54
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
55
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
56
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
57
+
58
+ <!-- description end -->
59
+ <!-- repositories-available start -->
60
+ ## Repositories available
61
+
62
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-200K-AWQ)
63
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-200K-GPTQ)
64
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-200K-GGUF)
65
+ * [01-ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/01-ai/Yi-34B-200K)
66
+ <!-- repositories-available end -->
67
+
68
+ <!-- prompt-template start -->
69
+ ## Prompt template: None
70
+
71
+ ```
72
+ {prompt}
73
+
74
+ ```
75
+
76
+ <!-- prompt-template end -->
77
+
78
+
79
+ <!-- README_AWQ.md-provided-files start -->
80
+ ## Provided files, and AWQ parameters
81
+
82
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
83
+
84
+ Models are released as sharded safetensors files.
85
+
86
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
87
+ | ------ | ---- | -- | ----------- | ------- | ---- |
88
+ | [main](https://huggingface.co/TheBloke/Yi-34B-200K-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 19.23 GB
89
+
90
+ <!-- README_AWQ.md-provided-files end -->
91
+
92
+ <!-- README_AWQ.md-text-generation-webui start -->
93
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
94
+
95
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
96
+
97
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
98
+
99
+ 1. Click the **Model tab**.
100
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-200K-AWQ`.
101
+ 3. Click **Download**.
102
+ 4. The model will start downloading. Once it's finished it will say "Done".
103
+ 5. In the top left, click the refresh icon next to **Model**.
104
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-200K-AWQ`
105
+ 7. Select **Loader: AutoAWQ**.
106
+ 8. Click Load, and the model will load and is now ready for use.
107
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
108
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
109
+ <!-- README_AWQ.md-text-generation-webui end -->
110
+
111
+ <!-- README_AWQ.md-use-from-vllm start -->
112
+ ## Multi-user inference server: vLLM
113
+
114
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
115
+
116
+ - Please ensure you are using vLLM version 0.2 or later.
117
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
118
+
119
+ For example:
120
+
121
+ ```shell
122
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Yi-34B-200K-AWQ --quantization awq --dtype auto
123
+ ```
124
+
125
+ - When using vLLM from Python code, again set `quantization=awq`.
126
+
127
+ For example:
128
+
129
+ ```python
130
+ from vllm import LLM, SamplingParams
131
+
132
+ prompts = [
133
+ "Tell me about AI",
134
+ "Write a story about llamas",
135
+ "What is 291 - 150?",
136
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
137
+ ]
138
+ prompt_template=f'''{prompt}
139
+ '''
140
+
141
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
142
+
143
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
144
+
145
+ llm = LLM(model="TheBloke/Yi-34B-200K-AWQ", quantization="awq", dtype="auto")
146
+
147
+ outputs = llm.generate(prompts, sampling_params)
148
+
149
+ # Print the outputs.
150
+ for output in outputs:
151
+ prompt = output.prompt
152
+ generated_text = output.outputs[0].text
153
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
154
+ ```
155
+ <!-- README_AWQ.md-use-from-vllm start -->
156
+
157
+ <!-- README_AWQ.md-use-from-tgi start -->
158
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
159
+
160
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
161
+
162
+ Example Docker parameters:
163
+
164
+ ```shell
165
+ --model-id TheBloke/Yi-34B-200K-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
166
+ ```
167
+
168
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
169
+
170
+ ```shell
171
+ pip3 install huggingface-hub
172
+ ```
173
+
174
+ ```python
175
+ from huggingface_hub import InferenceClient
176
+
177
+ endpoint_url = "https://your-endpoint-url-here"
178
+
179
+ prompt = "Tell me about AI"
180
+ prompt_template=f'''{prompt}
181
+ '''
182
+
183
+ client = InferenceClient(endpoint_url)
184
+ response = client.text_generation(prompt,
185
+ max_new_tokens=128,
186
+ do_sample=True,
187
+ temperature=0.7,
188
+ top_p=0.95,
189
+ top_k=40,
190
+ repetition_penalty=1.1)
191
+
192
+ print(f"Model output: ", response)
193
+ ```
194
+ <!-- README_AWQ.md-use-from-tgi end -->
195
+
196
+ <!-- README_AWQ.md-use-from-python start -->
197
+ ## Inference from Python code using Transformers
198
+
199
+ ### Install the necessary packages
200
+
201
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
202
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
203
+
204
+ ```shell
205
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
206
+ ```
207
+
208
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
209
+
210
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
211
+
212
+ ```shell
213
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
214
+ ```
215
+
216
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
217
+
218
+ ```shell
219
+ pip3 uninstall -y autoawq
220
+ git clone https://github.com/casper-hansen/AutoAWQ
221
+ cd AutoAWQ
222
+ pip3 install .
223
+ ```
224
+
225
+ ### Transformers example code (requires Transformers 4.35.0 and later)
226
+
227
+ ```python
228
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
229
+
230
+ model_name_or_path = "TheBloke/Yi-34B-200K-AWQ"
231
+
232
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
233
+ model = AutoModelForCausalLM.from_pretrained(
234
+ model_name_or_path,
235
+ low_cpu_mem_usage=True,
236
+ device_map="cuda:0"
237
+ )
238
+
239
+ # Using the text streamer to stream output one token at a time
240
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
241
+
242
+ prompt = "Tell me about AI"
243
+ prompt_template=f'''{prompt}
244
+ '''
245
+
246
+ # Convert prompt to tokens
247
+ tokens = tokenizer(
248
+ prompt_template,
249
+ return_tensors='pt'
250
+ ).input_ids.cuda()
251
+
252
+ generation_params = {
253
+ "do_sample": True,
254
+ "temperature": 0.7,
255
+ "top_p": 0.95,
256
+ "top_k": 40,
257
+ "max_new_tokens": 512,
258
+ "repetition_penalty": 1.1
259
+ }
260
+
261
+ # Generate streamed output, visible one token at a time
262
+ generation_output = model.generate(
263
+ tokens,
264
+ streamer=streamer,
265
+ **generation_params
266
+ )
267
+
268
+ # Generation without a streamer, which will include the prompt in the output
269
+ generation_output = model.generate(
270
+ tokens,
271
+ **generation_params
272
+ )
273
+
274
+ # Get the tokens from the output, decode them, print them
275
+ token_output = generation_output[0]
276
+ text_output = tokenizer.decode(token_output)
277
+ print("model.generate output: ", text_output)
278
+
279
+ # Inference is also possible via Transformers' pipeline
280
+ from transformers import pipeline
281
+
282
+ pipe = pipeline(
283
+ "text-generation",
284
+ model=model,
285
+ tokenizer=tokenizer,
286
+ **generation_params
287
+ )
288
+
289
+ pipe_output = pipe(prompt_template)[0]['generated_text']
290
+ print("pipeline output: ", pipe_output)
291
+
292
+ ```
293
+ <!-- README_AWQ.md-use-from-python end -->
294
+
295
+ <!-- README_AWQ.md-compatibility start -->
296
+ ## Compatibility
297
+
298
+ The files provided are tested to work with:
299
+
300
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
301
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
302
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
303
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
304
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
305
+
306
+ <!-- README_AWQ.md-compatibility end -->
307
+
308
+ <!-- footer start -->
309
+ <!-- 200823 -->
310
+ ## Discord
311
+
312
+ For further support, and discussions on these models and AI in general, join us at:
313
+
314
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
315
+
316
+ ## Thanks, and how to contribute
317
+
318
+ Thanks to the [chirper.ai](https://chirper.ai) team!
319
+
320
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
321
+
322
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
323
+
324
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
325
+
326
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
327
+
328
+ * Patreon: https://patreon.com/TheBlokeAI
329
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
330
+
331
+ **Special thanks to**: Aemon Algiz.
332
+
333
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
334
+
335
+
336
+ Thank you to all my generous patrons and donaters!
337
+
338
+ And thank you again to a16z for their generous grant.
339
+
340
+ <!-- footer end -->
341
+
342
+ # Original model card: 01-ai's Yi 34B 200K
343
+
344
+ <div align="center">
345
+
346
+ <img src="./Yi.svg" width="200px">
347
+
348
+ </div>
349
+
350
+ ## Introduction
351
+
352
+ The **Yi** series models are large language models trained from scratch by
353
+ developers at [01.AI](https://01.ai/). The first public release contains two
354
+ bilingual(English/Chinese) base models with the parameter sizes of 6B([`Yi-6B`](https://huggingface.co/01-ai/Yi-6B))
355
+ and 34B([`Yi-34B`](https://huggingface.co/01-ai/Yi-34B)). Both of them are trained
356
+ with 4K sequence length and can be extended to 32K during inference time.
357
+ The [`Yi-6B-200K`](https://huggingface.co/01-ai/Yi-6B-200K)
358
+ and [`Yi-34B-200K`](https://huggingface.co/01-ai/Yi-34B-200K) are base model with
359
+ 200K context length.
360
+
361
+ ## News
362
+
363
+ - 🎯 **2023/11/06**: The base model of [`Yi-6B-200K`](https://huggingface.co/01-ai/Yi-6B-200K)
364
+ and [`Yi-34B-200K`](https://huggingface.co/01-ai/Yi-34B-200K) with 200K context length.
365
+ - 🎯 **2023/11/02**: The base model of [`Yi-6B`](https://huggingface.co/01-ai/Yi-6B) and
366
+ [`Yi-34B`](https://huggingface.co/01-ai/Yi-34B).
367
+
368
+
369
+ ## Model Performance
370
+
371
+ | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
372
+ | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
373
+ | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
374
+ | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
375
+ | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
376
+ | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
377
+ | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
378
+ | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
379
+ | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
380
+ | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
381
+ | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
382
+ | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
383
+ | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
384
+ | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
385
+ | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
386
+
387
+ While benchmarking open-source models, we have observed a disparity between the
388
+ results generated by our pipeline and those reported in public sources (e.g.
389
+ OpenCompass). Upon conducting a more in-depth investigation of this difference,
390
+ we have discovered that various models may employ different prompts,
391
+ post-processing strategies, and sampling techniques, potentially resulting in
392
+ significant variations in the outcomes. Our prompt and post-processing strategy
393
+ remains consistent with the original benchmark, and greedy decoding is employed
394
+ during evaluation without any post-processing for the generated content. For
395
+ scores that were not reported by the original authors (including scores reported
396
+ with different settings), we try to get results with our pipeline.
397
+
398
+ To evaluate the model's capability extensively, we adopted the methodology
399
+ outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
400
+ ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
401
+ were incorporated to evaluate reading comprehension. CSQA was exclusively tested
402
+ using a 7-shot setup, while all other tests were conducted with a 0-shot
403
+ configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
404
+ HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
405
+ to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
406
+ is derived by averaging the scores on the remaining tasks. Since the scores for
407
+ these two tasks are generally lower than the average, we believe that
408
+ Falcon-180B's performance was not underestimated.
409
+
410
+ ## Usage
411
+
412
+ Please visit our [github repository](https://github.com/01-ai/Yi) for general
413
+ guidance on how to use this model.
414
+
415
+ ## Disclaimer
416
+
417
+ Although we use data compliance checking algorithms during the training process
418
+ to ensure the compliance of the trained model to the best of our ability, due to
419
+ the complexity of the data and the diversity of language model usage scenarios,
420
+ we cannot guarantee that the model will generate correct and reasonable output
421
+ in all scenarios. Please be aware that there is still a risk of the model
422
+ producing problematic outputs. We will not be responsible for any risks and
423
+ issues resulting from misuse, misguidance, illegal usage, and related
424
+ misinformation, as well as any associated data security concerns.
425
+
426
+ ## License
427
+
428
+ The Yi series models are fully open for academic research and free commercial
429
+ usage with permission via applications. All usage must adhere to the [Model
430
+ License Agreement 2.0](https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE). To
431
+ apply for the official commercial license, please contact us
432