TheBloke commited on
Commit
ec2806d
·
1 Parent(s): 8d4ab53

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -55,7 +55,7 @@ This repo contains GGUF format model files for [Elinas' Chronos 33B](https://hug
55
  <!-- README_GGUF.md-about-gguf start -->
56
  ### About GGUF
57
 
58
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
59
 
60
  Here is an incomplate list of clients and libraries that are known to support GGUF:
61
 
@@ -98,7 +98,7 @@ Below is an instruction that describes a task. Write a response that appropriate
98
  <!-- compatibility_gguf start -->
99
  ## Compatibility
100
 
101
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
102
 
103
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
104
 
@@ -162,7 +162,7 @@ Then click Download.
162
  I recommend using the `huggingface-hub` Python library:
163
 
164
  ```shell
165
- pip3 install huggingface-hub>=0.17.1
166
  ```
167
 
168
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -191,25 +191,25 @@ pip3 install hf_transfer
191
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
192
 
193
  ```shell
194
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-33b-GGUF chronos-33b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
195
  ```
196
 
197
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
198
  </details>
199
  <!-- README_GGUF.md-how-to-download end -->
200
 
201
  <!-- README_GGUF.md-how-to-run start -->
202
  ## Example `llama.cpp` command
203
 
204
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
205
 
206
  ```shell
207
- ./main -ngl 32 -m chronos-33b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
208
  ```
209
 
210
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
211
 
212
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
213
 
214
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
215
 
@@ -223,22 +223,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
223
 
224
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
225
 
226
- ### How to load this model from Python using ctransformers
227
 
228
  #### First install the package
229
 
230
- ```bash
 
 
231
  # Base ctransformers with no GPU acceleration
232
- pip install ctransformers>=0.2.24
233
  # Or with CUDA GPU acceleration
234
- pip install ctransformers[cuda]>=0.2.24
235
- # Or with ROCm GPU acceleration
236
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
237
- # Or with Metal GPU acceleration for macOS systems
238
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
239
  ```
240
 
241
- #### Simple example code to load one of these GGUF models
242
 
243
  ```python
244
  from ctransformers import AutoModelForCausalLM
@@ -251,7 +253,7 @@ print(llm("AI is going to"))
251
 
252
  ## How to use with LangChain
253
 
254
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
255
 
256
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
257
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
55
  <!-- README_GGUF.md-about-gguf start -->
56
  ### About GGUF
57
 
58
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
59
 
60
  Here is an incomplate list of clients and libraries that are known to support GGUF:
61
 
 
98
  <!-- compatibility_gguf start -->
99
  ## Compatibility
100
 
101
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
102
 
103
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
104
 
 
162
  I recommend using the `huggingface-hub` Python library:
163
 
164
  ```shell
165
+ pip3 install huggingface-hub
166
  ```
167
 
168
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
191
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
192
 
193
  ```shell
194
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-33b-GGUF chronos-33b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
195
  ```
196
 
197
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
198
  </details>
199
  <!-- README_GGUF.md-how-to-download end -->
200
 
201
  <!-- README_GGUF.md-how-to-run start -->
202
  ## Example `llama.cpp` command
203
 
204
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
205
 
206
  ```shell
207
+ ./main -ngl 32 -m chronos-33b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
208
  ```
209
 
210
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
211
 
212
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
213
 
214
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
215
 
 
223
 
224
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
225
 
226
+ ### How to load this model in Python code, using ctransformers
227
 
228
  #### First install the package
229
 
230
+ Run one of the following commands, according to your system:
231
+
232
+ ```shell
233
  # Base ctransformers with no GPU acceleration
234
+ pip install ctransformers
235
  # Or with CUDA GPU acceleration
236
+ pip install ctransformers[cuda]
237
+ # Or with AMD ROCm GPU acceleration (Linux only)
238
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
239
+ # Or with Metal GPU acceleration for macOS systems only
240
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
241
  ```
242
 
243
+ #### Simple ctransformers example code
244
 
245
  ```python
246
  from ctransformers import AutoModelForCausalLM
 
253
 
254
  ## How to use with LangChain
255
 
256
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
257
 
258
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
259
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)