TheBloke commited on
Commit
6489199
1 Parent(s): c4246e4

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -52
README.md CHANGED
@@ -1,6 +1,26 @@
1
  ---
 
2
  inference: false
3
  license: other
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  <!-- header start -->
@@ -20,100 +40,197 @@ license: other
20
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
21
  <!-- header end -->
22
 
23
- # Austism's Chronos WizardLM UC Scot ST 13B GPTQ
 
 
 
 
 
24
 
25
- These files are GPTQ 4bit model files for [Austism's Chronos WizardLM UC Scot ST 13B](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b).
26
 
27
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
28
 
 
 
29
  ## Repositories available
30
 
31
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ)
32
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GGML)
33
- * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- ## How to easily download and use this model in text-generation-webui
36
 
37
- Please make sure you're using the latest version of text-generation-webui
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  1. Click the **Model tab**.
40
  2. Under **Download custom model or LoRA**, enter `TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ`.
 
 
41
  3. Click **Download**.
42
- 4. The model will start downloading, and once finished it will be automatically loaded.
43
- 5. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
44
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
45
- 6. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
46
-
 
 
 
 
 
47
  ## How to use this GPTQ model from Python code
48
 
49
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- `pip install auto-gptq`
 
 
 
 
52
 
53
- Then try the following example code:
54
 
55
  ```python
56
- from transformers import AutoTokenizer, pipeline, logging
57
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
58
- import argparse
59
 
60
  model_name_or_path = "TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ"
61
- model_basename = "chronos-wizardlm-uc-scot-st-13B-GPTQ-4bit-128g.no-act.order"
62
-
63
- use_triton = False
 
 
 
64
 
65
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
66
 
67
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
68
- model_basename=model_basename,
69
- use_safetensors=True,
70
- trust_remote_code=True,
71
- device="cuda:0",
72
- use_triton=use_triton,
73
- quantize_config=None)
 
 
74
 
75
  print("\n\n*** Generate:")
76
 
77
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
78
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
79
  print(tokenizer.decode(output[0]))
80
 
81
  # Inference can also be done using transformers' pipeline
82
 
83
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
84
- logging.set_verbosity(logging.CRITICAL)
85
-
86
- prompt = "Tell me about AI"
87
- prompt_template=f'''### Human: {prompt}
88
- ### Assistant:'''
89
-
90
  print("*** Pipeline:")
91
  pipe = pipeline(
92
  "text-generation",
93
  model=model,
94
  tokenizer=tokenizer,
95
  max_new_tokens=512,
 
96
  temperature=0.7,
97
  top_p=0.95,
98
- repetition_penalty=1.15
 
99
  )
100
 
101
  print(pipe(prompt_template)[0]['generated_text'])
102
  ```
 
103
 
104
- ## Provided files
105
-
106
- **chronos-wizardlm-uc-scot-st-13B-GPTQ-4bit-128g.no-act.order.safetensors**
107
 
108
- This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
109
 
110
- It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
111
 
112
- * `chronos-wizardlm-uc-scot-st-13B-GPTQ-4bit-128g.no-act.order.safetensors`
113
- * Works with AutoGPTQ in CUDA or Triton modes.
114
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
115
- * Works with text-generation-webui, including one-click-installers.
116
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
117
 
118
  <!-- footer start -->
119
  <!-- 200823 -->
@@ -123,10 +240,12 @@ For further support, and discussions on these models and AI in general, join us
123
 
124
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
125
 
126
- ## Thanks, and how to contribute.
127
 
128
  Thanks to the [chirper.ai](https://chirper.ai) team!
129
 
 
 
130
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
131
 
132
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -138,7 +257,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
138
 
139
  **Special thanks to**: Aemon Algiz.
140
 
141
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
142
 
143
 
144
  Thank you to all my generous patrons and donaters!
@@ -147,9 +266,9 @@ And thank you again to a16z for their generous grant.
147
 
148
  <!-- footer end -->
149
 
150
- # Original model card: Austism's Chronos WizardLM UC Scot ST 13B
151
 
152
- (chronos-13b+(WizardLM Uncensored+CoT+Storytelling))
153
  80/20 merge
154
 
155
  intended to be much like chronos with different writing and instruction following capabilities.
 
1
  ---
2
+ base_model: https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b
3
  inference: false
4
  license: other
5
+ model_creator: Austism
6
+ model_name: Chronos Wizardlm Uc Scot St 13B
7
+ model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - llama
23
+ - storywriting
24
  ---
25
 
26
  <!-- header start -->
 
40
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
41
  <!-- header end -->
42
 
43
+ # Chronos Wizardlm Uc Scot St 13B - GPTQ
44
+ - Model creator: [Austism](https://huggingface.co/Austism)
45
+ - Original model: [Chronos Wizardlm Uc Scot St 13B](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b)
46
+
47
+ <!-- description start -->
48
+ ## Description
49
 
50
+ This repo contains GPTQ model files for [Austism's Chronos Wizardlm Uc Scot St 13B](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b).
51
 
52
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
53
 
54
+ <!-- description end -->
55
+ <!-- repositories-available start -->
56
  ## Repositories available
57
 
58
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-AWQ)
59
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ)
60
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GGUF)
61
+ * [Austism's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b)
62
+ <!-- repositories-available end -->
63
+
64
+ <!-- prompt-template start -->
65
+ ## Prompt template: Alpaca
66
+
67
+ ```
68
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
69
+
70
+ ### Instruction:
71
+ {prompt}
72
+
73
+ ### Response:
74
+
75
+ ```
76
+
77
+ <!-- prompt-template end -->
78
+ <!-- licensing start -->
79
+ ## Licensing
80
+
81
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
82
+
83
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
84
+
85
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Austism's Chronos Wizardlm Uc Scot St 13B](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b).
86
+ <!-- licensing end -->
87
+ <!-- README_GPTQ.md-provided-files start -->
88
+ ## Provided files and GPTQ parameters
89
+
90
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
91
+
92
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
93
+
94
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
95
+
96
+ <details>
97
+ <summary>Explanation of GPTQ parameters</summary>
98
+
99
+ - Bits: The bit size of the quantised model.
100
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
101
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
102
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
103
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
104
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
105
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
106
+
107
+ </details>
108
+
109
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
110
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
111
+ | [main](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 7.45 GB | Yes | 4-bit, without Act Order and group size 128g. |
112
 
113
+ <!-- README_GPTQ.md-provided-files end -->
114
 
115
+ <!-- README_GPTQ.md-download-from-branches start -->
116
+ ## How to download from branches
117
+
118
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ:main`
119
+ - With Git, you can clone a branch with:
120
+ ```
121
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ
122
+ ```
123
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
124
+ <!-- README_GPTQ.md-download-from-branches end -->
125
+ <!-- README_GPTQ.md-text-generation-webui start -->
126
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
127
+
128
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
129
+
130
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
131
 
132
  1. Click the **Model tab**.
133
  2. Under **Download custom model or LoRA**, enter `TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ`.
134
+ - To download from a specific branch, enter for example `TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ:main`
135
+ - see Provided Files above for the list of branches for each option.
136
  3. Click **Download**.
137
+ 4. The model will start downloading. Once it's finished it will say "Done".
138
+ 5. In the top left, click the refresh icon next to **Model**.
139
+ 6. In the **Model** dropdown, choose the model you just downloaded: `chronos-wizardlm-uc-scot-st-13B-GPTQ`
140
+ 7. The model will automatically load, and is now ready for use!
141
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
142
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
143
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
144
+ <!-- README_GPTQ.md-text-generation-webui end -->
145
+
146
+ <!-- README_GPTQ.md-use-from-python start -->
147
  ## How to use this GPTQ model from Python code
148
 
149
+ ### Install the necessary packages
150
+
151
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
152
+
153
+ ```shell
154
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
155
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
156
+ ```
157
+
158
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
159
+
160
+ ```shell
161
+ pip3 uninstall -y auto-gptq
162
+ git clone https://github.com/PanQiWei/AutoGPTQ
163
+ cd AutoGPTQ
164
+ pip3 install .
165
+ ```
166
+
167
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
168
 
169
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
170
+ ```shell
171
+ pip3 uninstall -y transformers
172
+ pip3 install git+https://github.com/huggingface/transformers.git
173
+ ```
174
 
175
+ ### You can then use the following code
176
 
177
  ```python
178
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
 
179
 
180
  model_name_or_path = "TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ"
181
+ # To use a different branch, change revision
182
+ # For example: revision="main"
183
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
184
+ device_map="auto",
185
+ trust_remote_code=False,
186
+ revision="main")
187
 
188
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
189
 
190
+ prompt = "Tell me about AI"
191
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
192
+
193
+ ### Instruction:
194
+ {prompt}
195
+
196
+ ### Response:
197
+
198
+ '''
199
 
200
  print("\n\n*** Generate:")
201
 
202
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
203
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
204
  print(tokenizer.decode(output[0]))
205
 
206
  # Inference can also be done using transformers' pipeline
207
 
 
 
 
 
 
 
 
208
  print("*** Pipeline:")
209
  pipe = pipeline(
210
  "text-generation",
211
  model=model,
212
  tokenizer=tokenizer,
213
  max_new_tokens=512,
214
+ do_sample=True,
215
  temperature=0.7,
216
  top_p=0.95,
217
+ top_k=40,
218
+ repetition_penalty=1.1
219
  )
220
 
221
  print(pipe(prompt_template)[0]['generated_text'])
222
  ```
223
+ <!-- README_GPTQ.md-use-from-python end -->
224
 
225
+ <!-- README_GPTQ.md-compatibility start -->
226
+ ## Compatibility
 
227
 
228
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
229
 
230
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
231
 
232
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
233
+ <!-- README_GPTQ.md-compatibility end -->
 
 
 
234
 
235
  <!-- footer start -->
236
  <!-- 200823 -->
 
240
 
241
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
242
 
243
+ ## Thanks, and how to contribute
244
 
245
  Thanks to the [chirper.ai](https://chirper.ai) team!
246
 
247
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
248
+
249
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
250
 
251
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
257
 
258
  **Special thanks to**: Aemon Algiz.
259
 
260
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
261
 
262
 
263
  Thank you to all my generous patrons and donaters!
 
266
 
267
  <!-- footer end -->
268
 
269
+ # Original model card: Austism's Chronos Wizardlm Uc Scot St 13B
270
 
271
+ (chronos-13b+(WizardLM Uncensored+CoT+Storytelling))
272
  80/20 merge
273
 
274
  intended to be much like chronos with different writing and instruction following capabilities.