Initial GGCC model commit
Browse files
README.md
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- OpenAssistant/oasst1
|
4 |
+
inference: false
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
license: apache-2.0
|
9 |
+
model_type: falcon
|
10 |
+
tags:
|
11 |
+
- gpt
|
12 |
+
- llm
|
13 |
+
- large language model
|
14 |
+
- h2o-llmstudio
|
15 |
+
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
|
16 |
+
---
|
17 |
+
|
18 |
+
<!-- header start -->
|
19 |
+
<div style="width: 100%;">
|
20 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
21 |
+
</div>
|
22 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
23 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
24 |
+
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
|
25 |
+
</div>
|
26 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
27 |
+
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
28 |
+
</div>
|
29 |
+
</div>
|
30 |
+
<!-- header end -->
|
31 |
+
|
32 |
+
# H2O's GM OASST1 Falcon 7B v3 GGML
|
33 |
+
|
34 |
+
These files are GGML format model files for [H2O's GM OASST1 Falcon 7B v3](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3).
|
35 |
+
|
36 |
+
These files will **not** work in llama.cpp, text-generation-webui or KoboldCpp.
|
37 |
+
|
38 |
+
GGCC is a new format created in a new fork of llama.cpp that introduced this new Falcon GGML-based support: [cmp-nc/ggllm.cpp](https://github.com/cmp-nct/ggllm.cpp).
|
39 |
+
|
40 |
+
Currently these files will also not work with code that previously supported Falcon, such as LoLLMs Web UI and ctransformers. But support should be added soon.
|
41 |
+
|
42 |
+
These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
|
43 |
+
|
44 |
+
## Repositories available
|
45 |
+
|
46 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3-GPTQ)
|
47 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3-GGML)
|
48 |
+
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3)
|
49 |
+
|
50 |
+
## Prompt template: H2O
|
51 |
+
|
52 |
+
```
|
53 |
+
<|prompt|>{prompt}<|endoftext|><|answer|>
|
54 |
+
```
|
55 |
+
|
56 |
+
<!-- compatibility_ggml start -->
|
57 |
+
## Compatibility
|
58 |
+
|
59 |
+
To build cmp-nct's fork of llama.cpp with Falcon support plus CUDA acceleration, please try the following steps:
|
60 |
+
|
61 |
+
```
|
62 |
+
git clone https://github.com/cmp-nct/ggllm.cpp
|
63 |
+
cd ggllm.cpp
|
64 |
+
rm -rf build && mkdir build && cd build && cmake -DGGML_CUBLAS=1 .. && cmake --build . --config Release
|
65 |
+
```
|
66 |
+
|
67 |
+
Compiling on Windows: developer cmp-nct notes: 'I personally compile it using VScode. When compiling with CUDA support using the Microsoft compiler it's essential to select the "Community edition build tools". Otherwise CUDA won't compile.'
|
68 |
+
|
69 |
+
Once compiled you can then use `bin/falcon_main` just like you would use llama.cpp. For example:
|
70 |
+
```
|
71 |
+
bin/falcon_main -t 8 -ngl 100 -b 1 -m h2ogpt-gm-oasst1-en-2048-falcon-7b-v3.ggccv1.q4_0.bin -enc -p "write a story about llamas"
|
72 |
+
```
|
73 |
+
|
74 |
+
Parameter `-enc` should automatically use the right prompt template for the model, so you can just enter your desired prompt.
|
75 |
+
|
76 |
+
You can specify `-ngl 100` regardles of your VRAM, as it will automatically detect how much VRAM is available to be used.
|
77 |
+
|
78 |
+
Adjust `-t 8` (the number of CPU cores to use) according to what performs best on your system. Do not exceed the number of physical CPU cores you have.
|
79 |
+
|
80 |
+
`-b 1` reduces batch size to 1. This slightly lowers prompt evaluation time, but frees up VRAM to load more of the model on to your GPU. If you find prompt evaluation too slow and have enough spare VRAM, you can remove this parameter.
|
81 |
+
|
82 |
+
Please see https://github.com/cmp-nct/ggllm.cpp for further details and instructions.
|
83 |
+
|
84 |
+
<!-- compatibility_ggml end -->
|
85 |
+
|
86 |
+
## Provided files
|
87 |
+
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
88 |
+
| ---- | ---- | ---- | ---- | ---- | ----- |
|
89 |
+
| h2ogpt-gm-oasst1-en-2048-falcon-7b-v3.ggccv1.q4_0.bin | q4_0 | 4 | 4.06 GB| 6.56 GB | Original quant method, 4-bit. |
|
90 |
+
| h2ogpt-gm-oasst1-en-2048-falcon-7b-v3.ggccv1.q4_1.bin | q4_1 | 4 | 4.51 GB| 7.01 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
91 |
+
| h2ogpt-gm-oasst1-en-2048-falcon-7b-v3.ggccv1.q5_0.bin | q5_0 | 5 | 4.96 GB| 7.46 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
92 |
+
| h2ogpt-gm-oasst1-en-2048-falcon-7b-v3.ggccv1.q5_1.bin | q5_1 | 5 | 5.41 GB| 7.91 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
93 |
+
| h2ogpt-gm-oasst1-en-2048-falcon-7b-v3.ggccv1.q8_0.bin | q8_0 | 8 | 7.67 GB| 10.17 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
94 |
+
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
95 |
+
|
96 |
+
<!-- footer start -->
|
97 |
+
## Discord
|
98 |
+
|
99 |
+
For further support, and discussions on these models and AI in general, join us at:
|
100 |
+
|
101 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
102 |
+
|
103 |
+
## Thanks, and how to contribute.
|
104 |
+
|
105 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
106 |
+
|
107 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
108 |
+
|
109 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
110 |
+
|
111 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
112 |
+
|
113 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
114 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
115 |
+
|
116 |
+
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
|
117 |
+
|
118 |
+
**Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
|
119 |
+
|
120 |
+
Thank you to all my generous patrons and donaters!
|
121 |
+
|
122 |
+
<!-- footer end -->
|
123 |
+
|
124 |
+
# Original model card: H2O's GM OASST1 Falcon 7B v3
|
125 |
+
|
126 |
+
# Model Card
|
127 |
+
## Summary
|
128 |
+
|
129 |
+
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
|
130 |
+
- Base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
|
131 |
+
- Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) personalized
|
132 |
+
|
133 |
+
|
134 |
+
## Usage
|
135 |
+
|
136 |
+
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate`, `torch` and `einops` libraries installed.
|
137 |
+
|
138 |
+
```bash
|
139 |
+
pip install transformers==4.29.2
|
140 |
+
pip install accelerate==0.19.0
|
141 |
+
pip install torch==2.0.0
|
142 |
+
pip install einops==0.6.1
|
143 |
+
```
|
144 |
+
|
145 |
+
```python
|
146 |
+
import torch
|
147 |
+
from transformers import AutoTokenizer, pipeline
|
148 |
+
|
149 |
+
|
150 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
151 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
152 |
+
use_fast=False,
|
153 |
+
padding_side="left",
|
154 |
+
trust_remote_code=True,
|
155 |
+
)
|
156 |
+
|
157 |
+
generate_text = pipeline(
|
158 |
+
model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
159 |
+
tokenizer=tokenizer,
|
160 |
+
torch_dtype=torch.float16,
|
161 |
+
trust_remote_code=True,
|
162 |
+
use_fast=False,
|
163 |
+
device_map={"": "cuda:0"},
|
164 |
+
)
|
165 |
+
|
166 |
+
res = generate_text(
|
167 |
+
"Why is drinking water so healthy?",
|
168 |
+
min_new_tokens=2,
|
169 |
+
max_new_tokens=1024,
|
170 |
+
do_sample=False,
|
171 |
+
num_beams=1,
|
172 |
+
temperature=float(0.3),
|
173 |
+
repetition_penalty=float(1.2),
|
174 |
+
renormalize_logits=True
|
175 |
+
)
|
176 |
+
print(res[0]["generated_text"])
|
177 |
+
```
|
178 |
+
|
179 |
+
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
|
180 |
+
|
181 |
+
```python
|
182 |
+
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
|
183 |
+
```
|
184 |
+
|
185 |
+
```bash
|
186 |
+
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
187 |
+
```
|
188 |
+
|
189 |
+
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
190 |
+
|
191 |
+
|
192 |
+
```python
|
193 |
+
import torch
|
194 |
+
from h2oai_pipeline import H2OTextGenerationPipeline
|
195 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
196 |
+
|
197 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
198 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
199 |
+
use_fast=False,
|
200 |
+
padding_side="left",
|
201 |
+
trust_remote_code=True,
|
202 |
+
)
|
203 |
+
model = AutoModelForCausalLM.from_pretrained(
|
204 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
205 |
+
torch_dtype=torch.float16,
|
206 |
+
device_map={"": "cuda:0"},
|
207 |
+
trust_remote_code=True,
|
208 |
+
)
|
209 |
+
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
210 |
+
|
211 |
+
res = generate_text(
|
212 |
+
"Why is drinking water so healthy?",
|
213 |
+
min_new_tokens=2,
|
214 |
+
max_new_tokens=1024,
|
215 |
+
do_sample=False,
|
216 |
+
num_beams=1,
|
217 |
+
temperature=float(0.3),
|
218 |
+
repetition_penalty=float(1.2),
|
219 |
+
renormalize_logits=True
|
220 |
+
)
|
221 |
+
print(res[0]["generated_text"])
|
222 |
+
```
|
223 |
+
|
224 |
+
|
225 |
+
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
|
226 |
+
|
227 |
+
```python
|
228 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
229 |
+
|
230 |
+
model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3" # either local folder or huggingface model name
|
231 |
+
# Important: The prompt needs to be in the same format the model was trained with.
|
232 |
+
# You can find an example prompt in the experiment logs.
|
233 |
+
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
234 |
+
|
235 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
236 |
+
model_name,
|
237 |
+
use_fast=False,
|
238 |
+
trust_remote_code=True,
|
239 |
+
)
|
240 |
+
model = AutoModelForCausalLM.from_pretrained(
|
241 |
+
model_name,
|
242 |
+
torch_dtype=torch.float16,
|
243 |
+
device_map={"": "cuda:0"},
|
244 |
+
trust_remote_code=True,
|
245 |
+
)
|
246 |
+
model.cuda().eval()
|
247 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
248 |
+
|
249 |
+
# generate configuration can be modified to your needs
|
250 |
+
tokens = model.generate(
|
251 |
+
**inputs,
|
252 |
+
min_new_tokens=2,
|
253 |
+
max_new_tokens=1024,
|
254 |
+
do_sample=False,
|
255 |
+
num_beams=1,
|
256 |
+
temperature=float(0.3),
|
257 |
+
repetition_penalty=float(1.2),
|
258 |
+
renormalize_logits=True
|
259 |
+
)[0]
|
260 |
+
|
261 |
+
tokens = tokens[inputs["input_ids"].shape[1]:]
|
262 |
+
answer = tokenizer.decode(tokens, skip_special_tokens=True)
|
263 |
+
print(answer)
|
264 |
+
```
|
265 |
+
|
266 |
+
## Model Architecture
|
267 |
+
|
268 |
+
```
|
269 |
+
RWForCausalLM(
|
270 |
+
(transformer): RWModel(
|
271 |
+
(word_embeddings): Embedding(65024, 4544)
|
272 |
+
(h): ModuleList(
|
273 |
+
(0-31): 32 x DecoderLayer(
|
274 |
+
(input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
|
275 |
+
(self_attention): Attention(
|
276 |
+
(maybe_rotary): RotaryEmbedding()
|
277 |
+
(query_key_value): Linear(in_features=4544, out_features=4672, bias=False)
|
278 |
+
(dense): Linear(in_features=4544, out_features=4544, bias=False)
|
279 |
+
(attention_dropout): Dropout(p=0.0, inplace=False)
|
280 |
+
)
|
281 |
+
(mlp): MLP(
|
282 |
+
(dense_h_to_4h): Linear(in_features=4544, out_features=18176, bias=False)
|
283 |
+
(act): GELU(approximate='none')
|
284 |
+
(dense_4h_to_h): Linear(in_features=18176, out_features=4544, bias=False)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
)
|
288 |
+
(ln_f): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
|
289 |
+
)
|
290 |
+
(lm_head): Linear(in_features=4544, out_features=65024, bias=False)
|
291 |
+
)
|
292 |
+
```
|
293 |
+
|
294 |
+
## Model Configuration
|
295 |
+
|
296 |
+
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
297 |
+
|
298 |
+
|
299 |
+
## Disclaimer
|
300 |
+
|
301 |
+
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|
302 |
+
|
303 |
+
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
|
304 |
+
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
|
305 |
+
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
|
306 |
+
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
|
307 |
+
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
|
308 |
+
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
|
309 |
+
|
310 |
+
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|