TheBloke commited on
Commit
99516e0
·
1 Parent(s): 4f1b642

Upload new k-quant GGML quantised models.

Browse files
Files changed (1) hide show
  1. README.md +101 -23
README.md CHANGED
@@ -17,9 +17,9 @@ license: other
17
  </div>
18
  <!-- header end -->
19
 
20
- # Llama 30B Supercot GGML
21
 
22
- These files are GGML format model files for [Llama 30B Supercot](https://huggingface.co/ausboss/llama-30b-supercot).
23
 
24
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
@@ -28,39 +28,71 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
28
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
  * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
- ## Other repositories available
32
 
33
- * [ausboss' 4-bit GPTQ models for GPU inference](https://huggingface.co/ausboss/llama-30b-supercot-4bit)
34
- * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama-30b-supercot-GGML)
35
- * [ausboss' original unquantised fp16 model in HF format](https://huggingface.co/ausboss/llama-30b-supercot)
36
 
37
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
 
38
 
39
- llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
40
 
41
- I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Provided files
44
- | Name | Quant method | Bits | Size | RAM required | Use case |
45
  | ---- | ---- | ---- | ---- | ---- | ----- |
46
- | llama-30b-supercot.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | 4-bit. |
47
- | llama-30b-supercot.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
48
- | llama-30b-supercot.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
49
- | llama-30b-supercot.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
50
- | llama-30b-supercot.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
51
-
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  ## How to run in `llama.cpp`
54
 
55
  I use the following command line; adjust for your tastes and needs:
56
 
57
  ```
58
- ./main -t 12 -m llama-30b-supercot.v3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.
59
- ### Instruction:
60
- Write a story about llamas
61
- ### Response:"
62
  ```
63
- Change `-t 12` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
 
 
64
 
65
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
66
 
@@ -88,9 +120,55 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
88
  * Patreon: https://patreon.com/TheBlokeAI
89
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
90
 
91
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
92
 
93
  Thank you to all my generous patrons and donaters!
 
94
  <!-- footer end -->
95
 
96
- # Original model card: Llama 30B Supercot
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  </div>
18
  <!-- header end -->
19
 
20
+ # Ausboss' LLaMa 30B Supercot GGML
21
 
22
+ These files are GGML format model files for [Ausboss' LLaMa 30B Supercot](https://huggingface.co/ausboss/llama-30b-supercot).
23
 
24
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
 
28
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
  * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
+ ## Repositories available
32
 
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/ausboss/llama-30b-supercot-4bit)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama-30b-supercot-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ausboss/llama-30b-supercot)
36
 
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
 
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
 
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
+
44
+ They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
+
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
+
48
+ These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
49
+
50
+ They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
+
52
+ ## Explanation of the new k-quant methods
53
+
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
+
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
  | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | llama-30b-supercot.ggmlv3.q2_K.bin | q2_K | 2 | 13.60 GB | 16.10 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | llama-30b-supercot.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.20 GB | 19.70 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | llama-30b-supercot.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.64 GB | 18.14 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | llama-30b-supercot.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 13.98 GB | 16.48 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | llama-30b-supercot.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | Original llama.cpp quant method, 4-bit. |
73
+ | llama-30b-supercot.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
74
+ | llama-30b-supercot.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.57 GB | 22.07 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
75
+ | llama-30b-supercot.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.30 GB | 20.80 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
76
+ | llama-30b-supercot.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
77
+ | llama-30b-supercot.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
78
+ | llama-30b-supercot.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.02 GB | 25.52 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
79
+ | llama-30b-supercot.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.37 GB | 24.87 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
80
+ | llama-30b-supercot.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
81
+ | llama-30b-supercot.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
 
86
  ## How to run in `llama.cpp`
87
 
88
  I use the following command line; adjust for your tastes and needs:
89
 
90
  ```
91
+ ./main -t 10 -ngl 32 -m llama-30b-supercot.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
 
 
 
92
  ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
+
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
 
97
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
 
 
120
  * Patreon: https://patreon.com/TheBlokeAI
121
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
 
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
126
 
127
  Thank you to all my generous patrons and donaters!
128
+
129
  <!-- footer end -->
130
 
131
+ # Original model card: Ausboss' LLaMa 30B Supercot
132
+
133
+ Merge of [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) + [kaiokendev/SuperCOT-LoRA](https://huggingface.co/kaiokendev/SuperCOT-LoRA/edit/main/README.md)
134
+
135
+ Supercot was trained to work with langchain prompting.
136
+
137
+
138
+ Load up locally in my custom LLM notebook that uses the Oobabooga modules to load up models: https://github.com/ausboss/Local-LLM-Langchain
139
+
140
+ Then you can add cells from of these other notebooks for testing: https://github.com/gkamradt/langchain-tutorials
141
+
142
+
143
+
144
+ # From Koikendev Lora page
145
+
146
+ ### Compatibility
147
+ This LoRA is compatible with any 7B, 13B or 30B 4-bit quantized LLaMa model, including ggml quantized converted bins
148
+
149
+ ### Prompting
150
+ You should prompt the LoRA the same way you would prompt Alpaca or Alpacino:
151
+
152
+ ```
153
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
154
+
155
+ ### Instruction:
156
+ <instruction>
157
+
158
+ ### Input:
159
+ <any additional context. Remove this if it's not neccesary>
160
+
161
+ ### Response:
162
+ <make sure to leave a single new-line here for optimal results>
163
+ ```
164
+
165
+ Remember that with lower parameter sizes, the structure of the prompt becomes more important. The same prompt worded differently can give wildly different answers. Consider using the following suggestion suffixes to improve output quality:
166
+
167
+ - "Think through this step by step"
168
+ - "Let's think about this logically"
169
+ - "Explain your reasoning"
170
+ - "Provide details to support your answer"
171
+ - "Compare and contrast your answer with alternatives"
172
+
173
+ ### Coming Soon
174
+ - Tweet fix for 13B and 7B - lower model sizes seem to be extremely sensitive to hashtags at the end of training data responses, especially at longer cutoffs