TheBloke commited on
Commit
12f2c5b
·
1 Parent(s): d2e748b

Update for Transformers GPTQ support

Browse files
README.md CHANGED
@@ -5,17 +5,20 @@ model_type: llama
5
  ---
6
 
7
  <!-- header start -->
8
- <div style="width: 100%;">
9
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
10
  </div>
11
  <div style="display: flex; justify-content: space-between; width: 100%;">
12
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
13
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
14
  </div>
15
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
16
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
17
  </div>
18
  </div>
 
 
19
  <!-- header end -->
20
 
21
  # Llama-2-7B-Chat Code Cherry Pop - GPTQ
@@ -53,13 +56,13 @@ Each separate quant is in a different branch. See below for instructions on fet
53
 
54
  | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
55
  | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
56
- | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
57
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
58
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
59
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
60
- | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
61
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
62
- | gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
63
  | gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
64
 
65
  ## How to download from branches
@@ -103,7 +106,7 @@ from transformers import AutoTokenizer, pipeline, logging
103
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
104
 
105
  model_name_or_path = "TheBloke/llama2-7b-chat-codeCherryPop-qLoRA-GPTQ"
106
- model_basename = "gptq_model-4bit-128g"
107
 
108
  use_triton = False
109
 
@@ -169,6 +172,7 @@ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLa
169
  ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
170
 
171
  <!-- footer start -->
 
172
  ## Discord
173
 
174
  For further support, and discussions on these models and AI in general, join us at:
@@ -188,13 +192,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
188
  * Patreon: https://patreon.com/TheBlokeAI
189
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
190
 
191
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
192
 
193
- **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
194
 
195
 
196
  Thank you to all my generous patrons and donaters!
197
 
 
 
198
  <!-- footer end -->
199
 
200
  # Original model card: TokenBender's Llama-2-7B-Chat Code Cherry Pop
@@ -203,20 +209,20 @@ Thank you to all my generous patrons and donaters!
203
 
204
  ### Overview:
205
  description:
206
-
207
  This is a llama2 7B HF chat model fine-tuned on 122k code instructions. In my early experiments it seems to be doing very well.
208
-
209
  additional_info:
210
-
211
  It's a bottom of the barrel model 😂 but after quantization it can be
212
  valuable for sure. It definitely proves that a 7B can be useful for boilerplate
213
  code stuff though.
214
 
215
  ### Plans:
216
  next_steps: "I've a few things in mind and after that this will be more valuable."
217
-
218
  tasks:
219
-
220
  - name: "I'll quantize these"
221
  timeline: "Possibly tonight or tomorrow in the day"
222
  result: "Then it can be run locally with 4G ram."
 
5
  ---
6
 
7
  <!-- header start -->
8
+ <!-- 200823 -->
9
+ <div style="width: auto; margin-left: auto; margin-right: auto">
10
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
11
  </div>
12
  <div style="display: flex; justify-content: space-between; width: 100%;">
13
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
14
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
15
  </div>
16
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
17
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
18
  </div>
19
  </div>
20
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
21
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
22
  <!-- header end -->
23
 
24
  # Llama-2-7B-Chat Code Cherry Pop - GPTQ
 
56
 
57
  | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
58
  | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
59
+ | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
60
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
61
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
62
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
63
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
64
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
65
+ | gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
66
  | gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
67
 
68
  ## How to download from branches
 
106
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
107
 
108
  model_name_or_path = "TheBloke/llama2-7b-chat-codeCherryPop-qLoRA-GPTQ"
109
+ model_basename = "model"
110
 
111
  use_triton = False
112
 
 
172
  ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
173
 
174
  <!-- footer start -->
175
+ <!-- 200823 -->
176
  ## Discord
177
 
178
  For further support, and discussions on these models and AI in general, join us at:
 
192
  * Patreon: https://patreon.com/TheBlokeAI
193
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
194
 
195
+ **Special thanks to**: Aemon Algiz.
196
 
197
+ **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
198
 
199
 
200
  Thank you to all my generous patrons and donaters!
201
 
202
+ And thank you again to a16z for their generous grant.
203
+
204
  <!-- footer end -->
205
 
206
  # Original model card: TokenBender's Llama-2-7B-Chat Code Cherry Pop
 
209
 
210
  ### Overview:
211
  description:
212
+
213
  This is a llama2 7B HF chat model fine-tuned on 122k code instructions. In my early experiments it seems to be doing very well.
214
+
215
  additional_info:
216
+
217
  It's a bottom of the barrel model 😂 but after quantization it can be
218
  valuable for sure. It definitely proves that a 7B can be useful for boilerplate
219
  code stuff though.
220
 
221
  ### Plans:
222
  next_steps: "I've a few things in mind and after that this will be more valuable."
223
+
224
  tasks:
225
+
226
  - name: "I'll quantize these"
227
  timeline: "Possibly tonight or tomorrow in the day"
228
  result: "Then it can be run locally with 4G ram."
config.json CHANGED
@@ -1,27 +1,38 @@
1
  {
2
- "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "bos_token_id": 1,
7
- "eos_token_id": 2,
8
- "hidden_act": "silu",
9
- "hidden_size": 4096,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 11008,
12
- "max_length": 4096,
13
- "max_position_embeddings": 4096,
14
- "model_type": "llama",
15
- "num_attention_heads": 32,
16
- "num_hidden_layers": 32,
17
- "num_key_value_heads": 32,
18
- "pad_token_id": 0,
19
- "pretraining_tp": 1,
20
- "rms_norm_eps": 1e-06,
21
- "rope_scaling": null,
22
- "tie_word_embeddings": false,
23
- "torch_dtype": "float16",
24
- "transformers_version": "4.32.0.dev0",
25
- "use_cache": true,
26
- "vocab_size": 32000
 
 
 
 
 
 
 
 
 
 
 
27
  }
 
1
  {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_length": 4096,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.32.0.dev0",
25
+ "use_cache": true,
26
+ "vocab_size": 32000,
27
+ "quantization_config": {
28
+ "bits": 4,
29
+ "group_size": 128,
30
+ "damp_percent": 0.1,
31
+ "desc_act": false,
32
+ "sym": true,
33
+ "true_sequential": true,
34
+ "model_name_or_path": null,
35
+ "model_file_base_name": "model",
36
+ "quant_method": "gptq"
37
+ }
38
  }
gptq_model-4bit-128g.safetensors → model.safetensors RENAMED
File without changes
quantize_config.json CHANGED
@@ -6,5 +6,5 @@
6
  "sym": true,
7
  "true_sequential": true,
8
  "model_name_or_path": null,
9
- "model_file_base_name": null
10
  }
 
6
  "sym": true,
7
  "true_sequential": true,
8
  "model_name_or_path": null,
9
+ "model_file_base_name": "model"
10
  }