TheBloke commited on
Commit
883dd53
1 Parent(s): d3d690c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -56
README.md CHANGED
@@ -3,7 +3,11 @@ datasets:
3
  - ehartford/wizard_vicuna_70k_unfiltered
4
  inference: false
5
  license: other
 
 
 
6
  model_type: llama
 
7
  ---
8
 
9
  <!-- header start -->
@@ -23,19 +27,28 @@ model_type: llama
23
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
24
  <!-- header end -->
25
 
26
- # George Sung's Llama2 7B Chat Uncensored GPTQ
 
 
27
 
28
- These files are GPTQ model files for [George Sung's Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored).
 
29
 
30
- Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
31
 
 
32
 
 
 
33
  ## Repositories available
34
 
35
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ)
36
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML)
37
- * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/georgesung/llama2_7b_chat_uncensored)
 
 
38
 
 
39
  ## Prompt template: Human-Response
40
 
41
  ```
@@ -43,125 +56,167 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
43
  {prompt}
44
 
45
  ### RESPONSE:
 
46
  ```
47
 
48
- ## Provided files
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
51
 
52
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
53
 
54
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
55
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
56
- | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
57
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
58
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
59
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
60
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ## How to download from branches
62
 
63
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/llama2_7b_chat_uncensored-GPTQ:gptq-4bit-32g-actorder_True`
64
  - With Git, you can clone a branch with:
65
  ```
66
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ`
67
  ```
68
  - In Python Transformers code, the branch is the `revision` parameter; see below.
69
-
 
70
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
71
 
72
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
73
 
74
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
75
 
76
  1. Click the **Model tab**.
77
  2. Under **Download custom model or LoRA**, enter `TheBloke/llama2_7b_chat_uncensored-GPTQ`.
78
- - To download from a specific branch, enter for example `TheBloke/llama2_7b_chat_uncensored-GPTQ:gptq-4bit-32g-actorder_True`
79
  - see Provided Files above for the list of branches for each option.
80
  3. Click **Download**.
81
- 4. The model will start downloading. Once it's finished it will say "Done"
82
  5. In the top left, click the refresh icon next to **Model**.
83
  6. In the **Model** dropdown, choose the model you just downloaded: `llama2_7b_chat_uncensored-GPTQ`
84
  7. The model will automatically load, and is now ready for use!
85
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
86
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
87
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
88
 
 
89
  ## How to use this GPTQ model from Python code
90
 
91
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
92
 
93
- `GITHUB_ACTIONS=true pip install auto-gptq`
94
 
95
- Then try the following example code:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  ```python
98
- from transformers import AutoTokenizer, pipeline, logging
99
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
100
 
101
  model_name_or_path = "TheBloke/llama2_7b_chat_uncensored-GPTQ"
102
- model_basename = "model"
103
-
104
- use_triton = False
 
 
 
105
 
106
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
107
 
108
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
109
- model_basename=model_basename,
110
- use_safetensors=True,
111
- trust_remote_code=True,
112
- device="cuda:0",
113
- use_triton=use_triton,
114
- quantize_config=None)
115
-
116
- """
117
- To download from a specific branch, use the revision parameter, as in this example:
118
-
119
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
120
- revision="gptq-4bit-32g-actorder_True",
121
- model_basename=model_basename,
122
- use_safetensors=True,
123
- trust_remote_code=True,
124
- device="cuda:0",
125
- quantize_config=None)
126
- """
127
-
128
  prompt = "Tell me about AI"
129
  prompt_template=f'''### HUMAN:
130
  {prompt}
131
 
132
  ### RESPONSE:
 
133
  '''
134
 
135
  print("\n\n*** Generate:")
136
 
137
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
138
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
139
  print(tokenizer.decode(output[0]))
140
 
141
  # Inference can also be done using transformers' pipeline
142
 
143
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
144
- logging.set_verbosity(logging.CRITICAL)
145
-
146
  print("*** Pipeline:")
147
  pipe = pipeline(
148
  "text-generation",
149
  model=model,
150
  tokenizer=tokenizer,
151
  max_new_tokens=512,
 
152
  temperature=0.7,
153
  top_p=0.95,
154
- repetition_penalty=1.15
 
155
  )
156
 
157
  print(pipe(prompt_template)[0]['generated_text'])
158
  ```
 
159
 
 
160
  ## Compatibility
161
 
162
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
163
 
164
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
165
 
166
  <!-- footer start -->
167
  <!-- 200823 -->
@@ -171,10 +226,12 @@ For further support, and discussions on these models and AI in general, join us
171
 
172
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
173
 
174
- ## Thanks, and how to contribute.
175
 
176
  Thanks to the [chirper.ai](https://chirper.ai) team!
177
 
 
 
178
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
179
 
180
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -186,7 +243,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
186
 
187
  **Special thanks to**: Aemon Algiz.
188
 
189
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
190
 
191
 
192
  Thank you to all my generous patrons and donaters!
@@ -202,6 +259,13 @@ And thank you again to a16z for their generous grant.
202
  Fine-tuned [Llama-2 7B](https://huggingface.co/TheBloke/Llama-2-7B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
203
  Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train.
204
 
 
 
 
 
 
 
 
205
  # Prompt style
206
  The model was trained with the following prompt style:
207
  ```
@@ -229,3 +293,6 @@ cd llm_qlora
229
  pip install -r requirements.txt
230
  python train.py configs/llama2_7b_chat_uncensored.yaml
231
  ```
 
 
 
 
3
  - ehartford/wizard_vicuna_70k_unfiltered
4
  inference: false
5
  license: other
6
+ model_creator: George Sung
7
+ model_link: https://huggingface.co/georgesung/llama2_7b_chat_uncensored
8
+ model_name: Llama2 7B Chat Uncensored
9
  model_type: llama
10
+ quantized_by: TheBloke
11
  ---
12
 
13
  <!-- header start -->
 
27
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
28
  <!-- header end -->
29
 
30
+ # Llama2 7B Chat Uncensored - GPTQ
31
+ - Model creator: [George Sung](https://huggingface.co/georgesung)
32
+ - Original model: [Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored)
33
 
34
+ <!-- description start -->
35
+ ## Description
36
 
37
+ This repo contains GPTQ model files for [George Sung's Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored).
38
 
39
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
40
 
41
+ <!-- description end -->
42
+ <!-- repositories-available start -->
43
  ## Repositories available
44
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ)
46
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGUF)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML)
48
+ * [George Sung's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/georgesung/llama2_7b_chat_uncensored)
49
+ <!-- repositories-available end -->
50
 
51
+ <!-- prompt-template start -->
52
  ## Prompt template: Human-Response
53
 
54
  ```
 
56
  {prompt}
57
 
58
  ### RESPONSE:
59
+
60
  ```
61
 
62
+ <!-- prompt-template end -->
63
+ <!-- licensing start -->
64
+ ## Licensing
65
+
66
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
67
+
68
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
69
+
70
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [George Sung's Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored).
71
+ <!-- licensing end -->
72
+ <!-- README_GPTQ.md-provided-files start -->
73
+ ## Provided files and GPTQ parameters
74
 
75
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
76
 
77
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
78
 
79
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
80
+
81
+ <details>
82
+ <summary>Explanation of GPTQ parameters</summary>
83
+
84
+ - Bits: The bit size of the quantised model.
85
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
86
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
87
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
88
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
89
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
90
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
91
 
92
+ </details>
93
+
94
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
95
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
96
+ | [main](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
97
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
98
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
99
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
100
+
101
+ <!-- README_GPTQ.md-provided-files end -->
102
+
103
+ <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/llama2_7b_chat_uncensored-GPTQ:main`
107
  - With Git, you can clone a branch with:
108
  ```
109
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
+ <!-- README_GPTQ.md-download-from-branches end -->
113
+ <!-- README_GPTQ.md-text-generation-webui start -->
114
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
 
116
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/llama2_7b_chat_uncensored-GPTQ`.
122
+ - To download from a specific branch, enter for example `TheBloke/llama2_7b_chat_uncensored-GPTQ:main`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
+ 4. The model will start downloading. Once it's finished it will say "Done".
126
  5. In the top left, click the refresh icon next to **Model**.
127
  6. In the **Model** dropdown, choose the model you just downloaded: `llama2_7b_chat_uncensored-GPTQ`
128
  7. The model will automatically load, and is now ready for use!
129
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
131
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
132
+ <!-- README_GPTQ.md-text-generation-webui end -->
133
 
134
+ <!-- README_GPTQ.md-use-from-python start -->
135
  ## How to use this GPTQ model from Python code
136
 
137
+ ### Install the necessary packages
138
 
139
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
140
 
141
+ ```shell
142
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
143
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
144
+ ```
145
+
146
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
147
+
148
+ ```shell
149
+ pip3 uninstall -y auto-gptq
150
+ git clone https://github.com/PanQiWei/AutoGPTQ
151
+ cd AutoGPTQ
152
+ pip3 install .
153
+ ```
154
+
155
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
156
+
157
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
158
+ ```shell
159
+ pip3 uninstall -y transformers
160
+ pip3 install git+https://github.com/huggingface/transformers.git
161
+ ```
162
+
163
+ ### You can then use the following code
164
 
165
  ```python
166
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
167
 
168
  model_name_or_path = "TheBloke/llama2_7b_chat_uncensored-GPTQ"
169
+ # To use a different branch, change revision
170
+ # For example: revision="main"
171
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
+ device_map="auto",
173
+ trust_remote_code=True,
174
+ revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  prompt = "Tell me about AI"
179
  prompt_template=f'''### HUMAN:
180
  {prompt}
181
 
182
  ### RESPONSE:
183
+
184
  '''
185
 
186
  print("\n\n*** Generate:")
187
 
188
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
189
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
190
  print(tokenizer.decode(output[0]))
191
 
192
  # Inference can also be done using transformers' pipeline
193
 
 
 
 
194
  print("*** Pipeline:")
195
  pipe = pipeline(
196
  "text-generation",
197
  model=model,
198
  tokenizer=tokenizer,
199
  max_new_tokens=512,
200
+ do_sample=True,
201
  temperature=0.7,
202
  top_p=0.95,
203
+ top_k=40,
204
+ repetition_penalty=1.1
205
  )
206
 
207
  print(pipe(prompt_template)[0]['generated_text'])
208
  ```
209
+ <!-- README_GPTQ.md-use-from-python end -->
210
 
211
+ <!-- README_GPTQ.md-compatibility start -->
212
  ## Compatibility
213
 
214
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
215
 
216
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
217
+
218
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
219
+ <!-- README_GPTQ.md-compatibility end -->
220
 
221
  <!-- footer start -->
222
  <!-- 200823 -->
 
226
 
227
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
228
 
229
+ ## Thanks, and how to contribute
230
 
231
  Thanks to the [chirper.ai](https://chirper.ai) team!
232
 
233
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
234
+
235
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
236
 
237
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
243
 
244
  **Special thanks to**: Aemon Algiz.
245
 
246
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
247
 
248
 
249
  Thank you to all my generous patrons and donaters!
 
259
  Fine-tuned [Llama-2 7B](https://huggingface.co/TheBloke/Llama-2-7B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
260
  Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train.
261
 
262
+ The version here is the fp16 HuggingFace model.
263
+
264
+ ## GGML & GPTQ versions
265
+ Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions:
266
+ * https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML
267
+ * https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ
268
+
269
  # Prompt style
270
  The model was trained with the following prompt style:
271
  ```
 
293
  pip install -r requirements.txt
294
  python train.py configs/llama2_7b_chat_uncensored.yaml
295
  ```
296
+
297
+ # Fine-tuning guide
298
+ https://georgesung.github.io/ai/qlora-ift/