TheBloke commited on
Commit
5837d86
·
verified ·
1 Parent(s): c7f86d7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +463 -0
README.md ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: AdaptLLM/medicine-LLM
3
+ datasets:
4
+ - Open-Orca/OpenOrca
5
+ - GAIR/lima
6
+ - WizardLM/WizardLM_evol_instruct_V2_196k
7
+ - EleutherAI/pile
8
+ inference: false
9
+ language:
10
+ - en
11
+ license: other
12
+ metrics:
13
+ - accuracy
14
+ model_creator: AdaptLLM
15
+ model_name: Medicine LLM
16
+ model_type: llama
17
+ pipeline_tag: text-generation
18
+ prompt_template: '### User Input:
19
+
20
+ {prompt}
21
+
22
+
23
+ ### Assistant Output:
24
+
25
+ '
26
+ quantized_by: TheBloke
27
+ tags:
28
+ - biology
29
+ - medical
30
+ ---
31
+ <!-- markdownlint-disable MD041 -->
32
+
33
+ <!-- header start -->
34
+ <!-- 200823 -->
35
+ <div style="width: auto; margin-left: auto; margin-right: auto">
36
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
37
+ </div>
38
+ <div style="display: flex; justify-content: space-between; width: 100%;">
39
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
41
+ </div>
42
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
44
+ </div>
45
+ </div>
46
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
47
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
+ <!-- header end -->
49
+
50
+ # Medicine LLM - GPTQ
51
+ - Model creator: [AdaptLLM](https://huggingface.co/AdaptLLM)
52
+ - Original model: [Medicine LLM](https://huggingface.co/AdaptLLM/medicine-LLM)
53
+
54
+ <!-- description start -->
55
+ # Description
56
+
57
+ This repo contains GPTQ model files for [AdaptLLM's Medicine LLM](https://huggingface.co/AdaptLLM/medicine-LLM).
58
+
59
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
60
+
61
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
62
+
63
+ <!-- description end -->
64
+ <!-- repositories-available start -->
65
+ ## Repositories available
66
+
67
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/medicine-LLM-AWQ)
68
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/medicine-LLM-GPTQ)
69
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/medicine-LLM-GGUF)
70
+ * [AdaptLLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/AdaptLLM/medicine-LLM)
71
+ <!-- repositories-available end -->
72
+
73
+ <!-- prompt-template start -->
74
+ ## Prompt template: AdaptLLM
75
+
76
+ ```
77
+ ### User Input:
78
+ {prompt}
79
+
80
+ ### Assistant Output:
81
+
82
+ ```
83
+
84
+ <!-- prompt-template end -->
85
+
86
+
87
+
88
+ <!-- README_GPTQ.md-compatible clients start -->
89
+ ## Known compatible clients / servers
90
+
91
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
92
+
93
+ These GPTQ models are known to work in the following inference servers/webuis.
94
+
95
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
96
+ - [KoboldAI United](https://github.com/henk717/koboldai)
97
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
98
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
99
+
100
+ This may not be a complete list; if you know of others, please let me know!
101
+ <!-- README_GPTQ.md-compatible clients end -->
102
+
103
+ <!-- README_GPTQ.md-provided-files start -->
104
+ ## Provided files, and GPTQ parameters
105
+
106
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
107
+
108
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
109
+
110
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
111
+
112
+ <details>
113
+ <summary>Explanation of GPTQ parameters</summary>
114
+
115
+ - Bits: The bit size of the quantised model.
116
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
117
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
118
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
119
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
120
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
121
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
122
+
123
+ </details>
124
+
125
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
126
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
127
+ | [main](https://huggingface.co/TheBloke/medicine-LLM-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 2048 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
128
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/medicine-LLM-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 2048 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
129
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/medicine-LLM-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 2048 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
130
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/medicine-LLM-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 2048 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
131
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/medicine-LLM-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 2048 | 7.62 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
132
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/medicine-LLM-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 2048 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
133
+
134
+ <!-- README_GPTQ.md-provided-files end -->
135
+
136
+ <!-- README_GPTQ.md-download-from-branches start -->
137
+ ## How to download, including from branches
138
+
139
+ ### In text-generation-webui
140
+
141
+ To download from the `main` branch, enter `TheBloke/medicine-LLM-GPTQ` in the "Download model" box.
142
+
143
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/medicine-LLM-GPTQ:gptq-4bit-32g-actorder_True`
144
+
145
+ ### From the command line
146
+
147
+ I recommend using the `huggingface-hub` Python library:
148
+
149
+ ```shell
150
+ pip3 install huggingface-hub
151
+ ```
152
+
153
+ To download the `main` branch to a folder called `medicine-LLM-GPTQ`:
154
+
155
+ ```shell
156
+ mkdir medicine-LLM-GPTQ
157
+ huggingface-cli download TheBloke/medicine-LLM-GPTQ --local-dir medicine-LLM-GPTQ --local-dir-use-symlinks False
158
+ ```
159
+
160
+ To download from a different branch, add the `--revision` parameter:
161
+
162
+ ```shell
163
+ mkdir medicine-LLM-GPTQ
164
+ huggingface-cli download TheBloke/medicine-LLM-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir medicine-LLM-GPTQ --local-dir-use-symlinks False
165
+ ```
166
+
167
+ <details>
168
+ <summary>More advanced huggingface-cli download usage</summary>
169
+
170
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
171
+
172
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
173
+
174
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
175
+
176
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
177
+
178
+ ```shell
179
+ pip3 install hf_transfer
180
+ ```
181
+
182
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
183
+
184
+ ```shell
185
+ mkdir medicine-LLM-GPTQ
186
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/medicine-LLM-GPTQ --local-dir medicine-LLM-GPTQ --local-dir-use-symlinks False
187
+ ```
188
+
189
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
190
+ </details>
191
+
192
+ ### With `git` (**not** recommended)
193
+
194
+ To clone a specific branch with `git`, use a command like this:
195
+
196
+ ```shell
197
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/medicine-LLM-GPTQ
198
+ ```
199
+
200
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
201
+
202
+ <!-- README_GPTQ.md-download-from-branches end -->
203
+ <!-- README_GPTQ.md-text-generation-webui start -->
204
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
205
+
206
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
207
+
208
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
209
+
210
+ 1. Click the **Model tab**.
211
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/medicine-LLM-GPTQ`.
212
+
213
+ - To download from a specific branch, enter for example `TheBloke/medicine-LLM-GPTQ:gptq-4bit-32g-actorder_True`
214
+ - see Provided Files above for the list of branches for each option.
215
+
216
+ 3. Click **Download**.
217
+ 4. The model will start downloading. Once it's finished it will say "Done".
218
+ 5. In the top left, click the refresh icon next to **Model**.
219
+ 6. In the **Model** dropdown, choose the model you just downloaded: `medicine-LLM-GPTQ`
220
+ 7. The model will automatically load, and is now ready for use!
221
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
222
+
223
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
224
+
225
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
226
+
227
+ <!-- README_GPTQ.md-text-generation-webui end -->
228
+
229
+ <!-- README_GPTQ.md-use-from-tgi start -->
230
+ ## Serving this model from Text Generation Inference (TGI)
231
+
232
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
233
+
234
+ Example Docker parameters:
235
+
236
+ ```shell
237
+ --model-id TheBloke/medicine-LLM-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
238
+ ```
239
+
240
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
241
+
242
+ ```shell
243
+ pip3 install huggingface-hub
244
+ ```
245
+
246
+ ```python
247
+ from huggingface_hub import InferenceClient
248
+
249
+ endpoint_url = "https://your-endpoint-url-here"
250
+
251
+ prompt = "Tell me about AI"
252
+ prompt_template=f'''### User Input:
253
+ {prompt}
254
+
255
+ ### Assistant Output:
256
+ '''
257
+
258
+ client = InferenceClient(endpoint_url)
259
+ response = client.text_generation(
260
+ prompt_template,
261
+ max_new_tokens=128,
262
+ do_sample=True,
263
+ temperature=0.7,
264
+ top_p=0.95,
265
+ top_k=40,
266
+ repetition_penalty=1.1
267
+ )
268
+
269
+ print(f"Model output: {response}")
270
+ ```
271
+ <!-- README_GPTQ.md-use-from-tgi end -->
272
+ <!-- README_GPTQ.md-use-from-python start -->
273
+ ## Python code example: inference from this GPTQ model
274
+
275
+ ### Install the necessary packages
276
+
277
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
278
+
279
+ ```shell
280
+ pip3 install --upgrade transformers optimum
281
+ # If using PyTorch 2.1 + CUDA 12.x:
282
+ pip3 install --upgrade auto-gptq
283
+ # or, if using PyTorch 2.1 + CUDA 11.x:
284
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
285
+ ```
286
+
287
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
288
+
289
+ ```shell
290
+ pip3 uninstall -y auto-gptq
291
+ git clone https://github.com/PanQiWei/AutoGPTQ
292
+ cd AutoGPTQ
293
+ git checkout v0.5.1
294
+ pip3 install .
295
+ ```
296
+
297
+ ### Example Python code
298
+
299
+ ```python
300
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
301
+
302
+ model_name_or_path = "TheBloke/medicine-LLM-GPTQ"
303
+ # To use a different branch, change revision
304
+ # For example: revision="gptq-4bit-32g-actorder_True"
305
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
306
+ device_map="auto",
307
+ trust_remote_code=False,
308
+ revision="main")
309
+
310
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
311
+
312
+ prompt = "Write a story about llamas"
313
+ system_message = "You are a story writing assistant"
314
+ prompt_template=f'''### User Input:
315
+ {prompt}
316
+
317
+ ### Assistant Output:
318
+ '''
319
+
320
+ print("\n\n*** Generate:")
321
+
322
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
323
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
324
+ print(tokenizer.decode(output[0]))
325
+
326
+ # Inference can also be done using transformers' pipeline
327
+
328
+ print("*** Pipeline:")
329
+ pipe = pipeline(
330
+ "text-generation",
331
+ model=model,
332
+ tokenizer=tokenizer,
333
+ max_new_tokens=512,
334
+ do_sample=True,
335
+ temperature=0.7,
336
+ top_p=0.95,
337
+ top_k=40,
338
+ repetition_penalty=1.1
339
+ )
340
+
341
+ print(pipe(prompt_template)[0]['generated_text'])
342
+ ```
343
+ <!-- README_GPTQ.md-use-from-python end -->
344
+
345
+ <!-- README_GPTQ.md-compatibility start -->
346
+ ## Compatibility
347
+
348
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
349
+
350
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
351
+
352
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
353
+ <!-- README_GPTQ.md-compatibility end -->
354
+
355
+ <!-- footer start -->
356
+ <!-- 200823 -->
357
+ ## Discord
358
+
359
+ For further support, and discussions on these models and AI in general, join us at:
360
+
361
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
362
+
363
+ ## Thanks, and how to contribute
364
+
365
+ Thanks to the [chirper.ai](https://chirper.ai) team!
366
+
367
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
368
+
369
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
370
+
371
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
372
+
373
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
374
+
375
+ * Patreon: https://patreon.com/TheBlokeAI
376
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
377
+
378
+ **Special thanks to**: Aemon Algiz.
379
+
380
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
381
+
382
+
383
+ Thank you to all my generous patrons and donaters!
384
+
385
+ And thank you again to a16z for their generous grant.
386
+
387
+ <!-- footer end -->
388
+
389
+ # Original model card: AdaptLLM's Medicine LLM
390
+
391
+
392
+ # Adapt (Large) Language Models to Domains
393
+ This repo contains the domain-specific base model developed from **LLaMA-1-7B**, using the method in our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530).
394
+
395
+ We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
396
+
397
+ ### 🤗 We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! ����
398
+
399
+ **************************** **Updates** ****************************
400
+ * 12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/medicine-LLM-13B) developed from LLaMA-1-13B.
401
+ * 12/8: Released our [chat models](https://huggingface.co/AdaptLLM/medicine-chat) developed from LLaMA-2-Chat-7B.
402
+ * 9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), and [base models](https://huggingface.co/AdaptLLM/medicine-LLM) developed from LLaMA-1-7B.
403
+
404
+
405
+ ## Domain-Specific LLaMA-1
406
+ ### LLaMA-1-7B
407
+ In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:
408
+
409
+ <p align='center'>
410
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
411
+ </p>
412
+
413
+ ### LLaMA-1-13B
414
+ Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B).
415
+
416
+ ## Domain-Specific LLaMA-2-Chat
417
+ Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)
418
+
419
+ For example, to chat with the biomedicine base model (**🤗we highly recommend switching to the [chat model](https://huggingface.co/AdaptLLM/medicine-chat) for better response quality!**):
420
+ ```python
421
+ from transformers import AutoModelForCausalLM, AutoTokenizer
422
+
423
+ model = AutoModelForCausalLM.from_pretrained("AdaptLLM/medicine-LLM")
424
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/medicine-LLM", use_fast=False)
425
+
426
+ # Put your input here:
427
+ user_input = '''Question: Which of the following is an example of monosomy?
428
+ Options:
429
+ - 46,XX
430
+ - 47,XXX
431
+ - 69,XYY
432
+ - 45,X
433
+
434
+ Please provide your choice first and then provide explanations if possible.'''
435
+
436
+ # Simply use your input as the prompt for base models
437
+ prompt = user_input
438
+
439
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
440
+ outputs = model.generate(input_ids=inputs, max_length=2048)[0]
441
+
442
+ answer_start = int(inputs.shape[-1])
443
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
444
+
445
+ print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
446
+ ```
447
+
448
+ ## Domain-Specific Tasks
449
+ To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
450
+
451
+ **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
452
+
453
+ ## Citation
454
+ If you find our work helpful, please cite us:
455
+ ```bibtex
456
+ @article{adaptllm,
457
+ title = {Adapting Large Language Models via Reading Comprehension},
458
+ author = {Daixuan Cheng and Shaohan Huang and Furu Wei},
459
+ journal = {CoRR},
460
+ volume = {abs/2309.09530},
461
+ year = {2023}
462
+ }
463
+ ```