Initial GPTQ model commit
Browse files
README.md
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
license: other
|
4 |
+
---
|
5 |
+
|
6 |
+
<!-- header start -->
|
7 |
+
<div style="width: 100%;">
|
8 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
9 |
+
</div>
|
10 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
11 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
12 |
+
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
|
13 |
+
</div>
|
14 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
15 |
+
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
16 |
+
</div>
|
17 |
+
</div>
|
18 |
+
<!-- header end -->
|
19 |
+
|
20 |
+
# Pankaj Mathur's Orca Mini 13B GPTQ
|
21 |
+
|
22 |
+
These files are GPTQ 4bit model files for [Pankaj Mathur's Orca Mini 13B](https://huggingface.co/psmathur/orca_mini_13b).
|
23 |
+
|
24 |
+
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
|
25 |
+
|
26 |
+
## Repositories available
|
27 |
+
|
28 |
+
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/orca_mini_13B-GPTQ)
|
29 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_13B-GGML)
|
30 |
+
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_13b)
|
31 |
+
|
32 |
+
## How to easily download and use this model in text-generation-webui
|
33 |
+
|
34 |
+
Please make sure you're using the latest version of text-generation-webui
|
35 |
+
|
36 |
+
1. Click the **Model tab**.
|
37 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/orca_mini_13B-GPTQ`.
|
38 |
+
3. Click **Download**.
|
39 |
+
4. The model will start downloading. Once it's finished it will say "Done"
|
40 |
+
5. In the top left, click the refresh icon next to **Model**.
|
41 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `orca_mini_13B-GPTQ`
|
42 |
+
7. The model will automatically load, and is now ready for use!
|
43 |
+
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
44 |
+
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
45 |
+
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
46 |
+
|
47 |
+
## How to use this GPTQ model from Python code
|
48 |
+
|
49 |
+
First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
|
50 |
+
|
51 |
+
`pip install auto-gptq`
|
52 |
+
|
53 |
+
Then try the following example code:
|
54 |
+
|
55 |
+
```python
|
56 |
+
from transformers import AutoTokenizer, pipeline, logging
|
57 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
58 |
+
import argparse
|
59 |
+
|
60 |
+
model_name_or_path = "TheBloke/orca_mini_13B-GPTQ"
|
61 |
+
model_basename = "orca-mini-13b-GPTQ-4bit-128g.no-act.order"
|
62 |
+
|
63 |
+
use_triton = False
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
66 |
+
|
67 |
+
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
68 |
+
model_basename=model_basename,
|
69 |
+
use_safetensors=True,
|
70 |
+
trust_remote_code=False,
|
71 |
+
device="cuda:0",
|
72 |
+
use_triton=use_triton,
|
73 |
+
quantize_config=None)
|
74 |
+
|
75 |
+
# Note: check the prompt template is correct for this model.
|
76 |
+
prompt = "Tell me about AI"
|
77 |
+
prompt_template=f'''USER: {prompt}
|
78 |
+
ASSISTANT:'''
|
79 |
+
|
80 |
+
print("\n\n*** Generate:")
|
81 |
+
|
82 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
83 |
+
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
|
84 |
+
print(tokenizer.decode(output[0]))
|
85 |
+
|
86 |
+
# Inference can also be done using transformers' pipeline
|
87 |
+
|
88 |
+
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
89 |
+
logging.set_verbosity(logging.CRITICAL)
|
90 |
+
|
91 |
+
print("*** Pipeline:")
|
92 |
+
pipe = pipeline(
|
93 |
+
"text-generation",
|
94 |
+
model=model,
|
95 |
+
tokenizer=tokenizer,
|
96 |
+
max_new_tokens=512,
|
97 |
+
temperature=0.7,
|
98 |
+
top_p=0.95,
|
99 |
+
repetition_penalty=1.15
|
100 |
+
)
|
101 |
+
|
102 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
103 |
+
```
|
104 |
+
|
105 |
+
## Provided files
|
106 |
+
|
107 |
+
**orca-mini-13b-GPTQ-4bit-128g.no-act.order.safetensors**
|
108 |
+
|
109 |
+
This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
|
110 |
+
|
111 |
+
It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
|
112 |
+
|
113 |
+
* `orca-mini-13b-GPTQ-4bit-128g.no-act.order.safetensors`
|
114 |
+
* Works with AutoGPTQ in CUDA or Triton modes.
|
115 |
+
* LLaMa models also work with [ExLlama](https://github.com/turboderp/exllama}, which usually provides much higher performance, and uses less VRAM, than AutoGPTQ.
|
116 |
+
* Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
|
117 |
+
* Works with text-generation-webui, including one-click-installers.
|
118 |
+
* Parameters: Groupsize = 128. Act Order / desc_act = False.
|
119 |
+
|
120 |
+
<!-- footer start -->
|
121 |
+
## Discord
|
122 |
+
|
123 |
+
For further support, and discussions on these models and AI in general, join us at:
|
124 |
+
|
125 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
126 |
+
|
127 |
+
## Thanks, and how to contribute.
|
128 |
+
|
129 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
130 |
+
|
131 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
132 |
+
|
133 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
134 |
+
|
135 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
136 |
+
|
137 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
138 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
139 |
+
|
140 |
+
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
|
141 |
+
|
142 |
+
**Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
|
143 |
+
|
144 |
+
Thank you to all my generous patrons and donaters!
|
145 |
+
|
146 |
+
<!-- footer end -->
|
147 |
+
|
148 |
+
# Original model card: Pankaj Mathur's Orca Mini 13B
|
149 |
+
|
150 |
+
# orca_mini_13b
|
151 |
+
An [OpenLLaMa-13B model](https://github.com/openlm-research/open_llama) model trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
|
152 |
+
|
153 |
+
|
154 |
+
# Dataset
|
155 |
+
|
156 |
+
We build explain tuned [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).
|
157 |
+
|
158 |
+
We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.
|
159 |
+
|
160 |
+
This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).
|
161 |
+
|
162 |
+
Please see below example usage how the **System** prompt is added before each **instruction**.
|
163 |
+
|
164 |
+
# Training
|
165 |
+
|
166 |
+
The training configurations are provided in the table below.
|
167 |
+
|
168 |
+
The training takes on 8x A100(80G) GPUs and lasts for around 15 Hours for cost of $180 using [Lambda Labs](https://lambdalabs.com)
|
169 |
+
|
170 |
+
We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca)
|
171 |
+
|
172 |
+
Here are some of params used during training:
|
173 |
+
|
174 |
+
|||
|
175 |
+
|:-------------:|:-------------:|
|
176 |
+
|*batch_size*|16|
|
177 |
+
|*train_micro_batch_size_per_gpu*|2|
|
178 |
+
|*gradient_accumulation_steps*|1|
|
179 |
+
|*Learning rate*|2e-5|
|
180 |
+
|*Max length*|1024|
|
181 |
+
|*Epochs*|3|
|
182 |
+
|*Optimizer*|AdamW|
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
# Example Usage
|
187 |
+
|
188 |
+
Below shows an example on how to use this model
|
189 |
+
|
190 |
+
```python
|
191 |
+
import torch
|
192 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
193 |
+
|
194 |
+
# Hugging Face model_path
|
195 |
+
model_path = 'psmathur/orca_mini_13b'
|
196 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
197 |
+
model = LlamaForCausalLM.from_pretrained(
|
198 |
+
model_path, torch_dtype=torch.float16, device_map='auto',
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
#generate text function
|
203 |
+
def generate_text(system, instruction, input=None):
|
204 |
+
|
205 |
+
if input:
|
206 |
+
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
207 |
+
else:
|
208 |
+
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n"
|
209 |
+
|
210 |
+
tokens = tokenizer.encode(prompt)
|
211 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
212 |
+
tokens = tokens.to('cuda')
|
213 |
+
|
214 |
+
instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50}
|
215 |
+
|
216 |
+
length = len(tokens[0])
|
217 |
+
with torch.no_grad():
|
218 |
+
rest = model.generate(
|
219 |
+
input_ids=tokens,
|
220 |
+
max_length=length+instance['generate_len'],
|
221 |
+
use_cache=True,
|
222 |
+
do_sample=True,
|
223 |
+
top_p=instance['top_p'],
|
224 |
+
temperature=instance['temperature'],
|
225 |
+
top_k=instance['top_k']
|
226 |
+
)
|
227 |
+
output = rest[0][length:]
|
228 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
229 |
+
return f'[!] Response: {string}'
|
230 |
+
|
231 |
+
# Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai
|
232 |
+
system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.'
|
233 |
+
instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project'
|
234 |
+
print(generate_text(system, instruction))
|
235 |
+
|
236 |
+
```
|
237 |
+
|
238 |
+
```
|
239 |
+
|
240 |
+
[!] Response:
|
241 |
+
Dear Sam Altman,
|
242 |
+
|
243 |
+
I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way.
|
244 |
+
|
245 |
+
While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools.
|
246 |
+
|
247 |
+
Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly.
|
248 |
+
|
249 |
+
I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future.
|
250 |
+
|
251 |
+
Thank you for your consideration.
|
252 |
+
|
253 |
+
Sincerely,
|
254 |
+
|
255 |
+
[Your Name]
|
256 |
+
|
257 |
+
```
|
258 |
+
|
259 |
+
**P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at [email protected]**
|
260 |
+
|
261 |
+
Next Goals:
|
262 |
+
1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions)
|
263 |
+
2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
|
264 |
+
3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
Limitations & Biases:
|
270 |
+
|
271 |
+
This model can produce factually incorrect output, and should not be relied on to produce factually accurate information.
|
272 |
+
This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
|
273 |
+
|
274 |
+
Disclaimer:
|
275 |
+
|
276 |
+
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
|
277 |
+
Please cosult an attorney before using this model for commercial purposes.
|
278 |
+
|
279 |
+
|
280 |
+
Citiation:
|
281 |
+
|
282 |
+
If you found wizardlm_alpaca_dolly_orca_open_llama_13b useful in your research or applications, please kindly cite using the following BibTeX:
|
283 |
+
|
284 |
+
```
|
285 |
+
@misc{wizardlm_alpaca_dolly_orca_open_llama_13b,
|
286 |
+
author = {Pankaj Mathur},
|
287 |
+
title = {wizardlm_alpaca_dolly_orca_open_llama_13b: An explain tuned OpenLLaMA-13b model on custom wizardlm, alpaca, & dolly datasets},
|
288 |
+
year = {2023},
|
289 |
+
publisher = {GitHub, HuggingFace},
|
290 |
+
journal = {GitHub repository, HuggingFace repository},
|
291 |
+
howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_13b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_13b}},
|
292 |
+
}
|
293 |
+
```
|
294 |
+
```
|
295 |
+
@software{openlm2023openllama,
|
296 |
+
author = {Xinyang Geng and Hao Liu},
|
297 |
+
title = {OpenLLaMA: An Open Reproduction of LLaMA},
|
298 |
+
month = May,
|
299 |
+
year = 2023,
|
300 |
+
url = {https://github.com/openlm-research/open_llama}
|
301 |
+
}
|
302 |
+
```
|
303 |
+
```
|
304 |
+
@misc{openalpaca,
|
305 |
+
author = {Yixuan Su and Tian Lan and Deng Cai},
|
306 |
+
title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
|
307 |
+
year = {2023},
|
308 |
+
publisher = {GitHub},
|
309 |
+
journal = {GitHub repository},
|
310 |
+
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
|
311 |
+
}
|
312 |
+
```
|
313 |
+
```
|
314 |
+
@misc{alpaca,
|
315 |
+
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
|
316 |
+
title = {Stanford Alpaca: An Instruction-following LLaMA model},
|
317 |
+
year = {2023},
|
318 |
+
publisher = {GitHub},
|
319 |
+
journal = {GitHub repository},
|
320 |
+
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
|
321 |
+
}
|
322 |
+
```
|