File size: 7,800 Bytes
dc5bd4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
#####importPackages
from langchain_text_splitters import CharacterTextSplitter
import os
import chromadb
from chromadb.utils import embedding_functions
import sentence_transformers
from sentence_transformers import SentenceTransformer
import ollama
#####downloadBioModels
import requests
import os
import tellurium as te
import simplesbml
GITHUB_OWNER = "sys-bio"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = "downloaded_models"
cached_data = None
def fetch_github_json():
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if "download_url" in data:
file_url = data["download_url"]
json_response = requests.get(file_url)
return json_response.json()
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
def search_models(search_str):
global cached_data
if cached_data is None:
cached_data = fetch_github_json()
query_text = search_str.strip().lower()
models = {}
for model_id, model_data in cached_data.items():
if 'name' in model_data:
name = model_data['name'].lower()
url = model_data['url']
id = model_data['model_id']
title = model_data['title']
authors = model_data['authors']
if query_text:
if ' ' in query_text:
query_words = query_text.split(" ")
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
else:
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
return models
def download_model_file(model_url, model_id):
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
response = requests.get(model_url)
if response.status_code == 200:
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"Model {model_id} downloaded successfully: {file_path}")
return file_path
else:
raise ValueError(f"Failed to download the model from {model_url}")
def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
"""Convert the SBML model to Antimony format and save to a file."""
try:
r = te.loadSBMLModel(sbml_file_path)
antimony_str = r.getCurrentAntimony()
with open(antimony_file_path, 'w') as file:
file.write(antimony_str)
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
except Exception as e:
print(f"Error converting SBML to Antimony: {e}")
def main():
try:
search_str = input("Enter keyword(s) for model search: ")
models = search_models(search_str)
if models:
print("Search Results:")
for model_key, model_info in models.items():
print(f"Model ID: {model_key}")
print(f"Name: {model_info['name']}")
print(f"URL: {model_info['url']}")
print(f"Title: {model_info['title']}")
print(f"Authors: {model_info['authors']}")
print()
sbml_file = download_model_file(model_info['url'], model_key)
antimony_file = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_key}.txt")
convert_sbml_to_antimony(sbml_file, antimony_file)
else:
print("No models found with the given keyword.")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
main()
#####splitBioModels
text_splitter2 = CharacterTextSplitter(
separator=" // ",
chunk_size=100,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
final_items = []
directory = r"C:\Users\navan\Downloads\BioModelsRAG-website\downloaded_models"
files = os.listdir(directory)
for file in files:
if file.endswith('.txt'): # Only process .txt files
file_path = os.path.join(directory, file)
with open(file_path, 'r') as f:
file_content = f.read()
items = text_splitter2.create_documents([file_content])
final_items.extend(items)
#####createVectorDB
CHROMA_DATA_PATH = r"CHROMA_EMBEDDINGS_PATH"
COLLECTION_NAME = "BioRAG_Collection"
EMBED_MODEL = "all-MiniLM-L6-v2"
client = chromadb.PersistentClient(path = CHROMA_DATA_PATH)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBED_MODEL
)
collection = client.create_collection(
name = "BioRAG_Collection",
embedding_function=embedding_func,
metadata={"hnsw:space": "cosine"},
)
documents = []
#####createDocuments
for item in final_items:
print(item)
prompt = f'Please summarize this segment of Antimony: {item}. The summaries must be clear and concise. For Display Names, provide the value for each variable. Expand mathematical functions into words. Cross reference all parts of the provided context. Explain well without errors and in an easily understandable way. Write in a list format. '
documents5 = ollama.generate(model = "llama3", prompt=prompt)
documents2 = documents5["response"]
documents.append(documents2)
collection.add(
documents = documents,
ids=[f"id{i}" for i in range(len(documents))]
)
#####generateResponse
while 1==1:
query_text = input("What question would you like to ask BioRAG? If you would like to end the session, please type 'STOP'." )
if query_text == "STOP":
break
query_results = collection.query(
query_texts = query_text,
n_results=10,
)
best_recommendation = query_results['documents']
prompt_template = f"""Use the following pieces of context to answer the question at the end. If you don't know the answer, say so.
This is the piece of context necessary: {best_recommendation}
Cross-reference all pieces of context to define variables and other unknown entities. Calculate mathematical values based on provided matching variables. Remember previous responses if asked a follow up question.
Question: {query_text}
"""
response = ollama.generate(model = "llama3", prompt=prompt_template)
print(response['response'])
|