BioModelsRAG / main.py
TheBobBob's picture
Upload core files
03a7adf verified
raw
history blame
1.71 kB
from createVectorDB import createVectorDB
from splitBioModels import splitBioModels
from createDocuments import createDocuments
from generateResponse import generateResponse
from selectBioModels import search_biomodels
from selectBioModels import copy_matching_files
DATA_PATH = r"C:\Users\navan\Downloads\BioModelsRAG\BioModelsRAG\2data"
CHROMA_DATA_PATH = r"C:\Users\navan\Downloads\BioModelsRAG\CHROMA_EMBEDDINGS_PATH"
directory = r'C:\Users\navan\Downloads\BioModelsRAG\BioModelsRAG\data'
output_file = r'C:\Users\navan\Downloads\BioModelsRAG\biomodels_output.csv'
final_models_folder = r'C:\Users\navan\Downloads\BioModelsRAG\final_models'
user_keywords = input("Keyword you would like to search for: ").split()
def main(report:bool = True, directory = DATA_PATH, chroma_data_path = CHROMA_DATA_PATH):
data = []
search_biomodels(directory, user_keywords, output_file)
copy_matching_files(output_file, directory, final_models_folder)
splitBioModels(directory=DATA_PATH, final_items=data)
collection = createVectorDB(
collection_name="123456789101112131415",
chroma_data_path=chroma_data_path,
embed_model="all-MiniLM-L6-v2",
metadata={"hnsw:space": "cosine"}
)
if report:
print("Collection created:", collection)
createDocuments(final_items=data, collection=collection)
if report:
print("Documents added to collection.")
query = "What protein interacts with DesensitizedAch2?"
result = generateResponse(query_text=query, collection=collection)
return result
#name of the program running v
if __name__ == "__main__":
result = main()
print(result)