TheBobBob commited on
Commit
18b72e8
·
verified ·
1 Parent(s): 0a2169d

Delete rag2.py

Browse files
Files changed (1) hide show
  1. rag2.py +0 -93
rag2.py DELETED
@@ -1,93 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """RAG2
3
-
4
- Automatically generated by Colab.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1fskQmtugai5co1I64Hv3iAcKQKUKHAzU
8
- """
9
- #####importPackages
10
- from langchain_text_splitters import CharacterTextSplitter
11
- import os
12
- import chromadb
13
- from chromadb.utils import embedding_functions
14
- import sentence_transformers
15
- from sentence_transformers import SentenceTransformer
16
- import ollama
17
-
18
-
19
- #####splitBioModels
20
- text_splitter2 = CharacterTextSplitter(
21
- separator = " // ",
22
- chunk_size=100,
23
- chunk_overlap=20,
24
- length_function=len,
25
- is_separator_regex=False,
26
- )
27
-
28
- final_items = []
29
-
30
- directory = r"data/*"
31
- files = os.listdir(directory)
32
-
33
- for file in files:
34
- file_path = os.path.join(directory, file)
35
- with open(file_path, 'r') as f:
36
- file_content = f.read()
37
- items = text_splitter2.create_documents([file_content])
38
- final_items.extend(items)
39
-
40
- #####createVectorDB
41
-
42
- CHROMA_DATA_PATH = r"CHROMA_EMBEDDINGS_PATH"
43
- COLLECTION_NAME = "BioRAG_Collection"
44
- EMBED_MODEL = "all-MiniLM-L6-v2"
45
- client = chromadb.PersistentClient(path = CHROMA_DATA_PATH)
46
-
47
- embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
48
- model_name=EMBED_MODEL
49
- )
50
-
51
- collection = client.create_collection(
52
- name = "BioRAG_Collection",
53
- embedding_function=embedding_func,
54
- metadata={"hnsw:space": "cosine"},
55
- )
56
-
57
- documents = []
58
-
59
- #####createDocuments
60
- for item in final_items:
61
- print(item)
62
- prompt = f'Please summarize this segment of Antimony: {item}. The summaries must be clear and concise. For Display Names, provide the value for each variable. Expand mathematical functions into words. Cross reference all parts of the provided context. Explain well without errors and in an easily understandable way. Write in a list format. '
63
- documents5 = ollama.generate(model = "llama3", prompt=prompt)
64
- documents2 = documents5["response"]
65
- documents.append(documents2)
66
-
67
- collection.add(
68
- documents = documents,
69
- ids=[f"id{i}" for i in range(len(documents))]
70
- )
71
-
72
- #####generateResponse
73
- while 1==1:
74
- query_text = input("What question would you like to ask BioRAG? If you would like to end the session, please type 'STOP'." )
75
- if query_text == "STOP":
76
- break
77
- query_results = collection.query(
78
- query_texts = query_text,
79
- n_results=5,
80
- )
81
- best_recommendation = query_results['documents']
82
-
83
- prompt_template = f"""Use the following pieces of context to answer the question at the end. If you don't know the answer, say so.
84
-
85
- This is the piece of context necessary: {best_recommendation}
86
-
87
- Cross-reference all pieces of context to define variables and other unknown entities. Calculate mathematical values based on provided matching variables. Remember previous responses if asked a follow up question.
88
-
89
- Question: {query_text}
90
-
91
- """
92
- response = ollama.generate(model = "llama3", prompt=prompt_template)
93
- print(response['response'])