ThePianist commited on
Commit
6848e1f
·
1 Parent(s): b377c7a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.34 +/- 19.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efdf41ec4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efdf41ec550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efdf41ec5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efdf41ec670>", "_build": "<function ActorCriticPolicy._build at 0x7efdf41ec700>", "forward": "<function ActorCriticPolicy.forward at 0x7efdf41ec790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efdf41ec820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efdf41ec8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efdf41ec940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efdf41ec9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efdf41eca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efdf41ecaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efdf41ee240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679553291477766114, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBswr2FRbG7lZAUPT6AFj1D/R298+r4PQAAgD8AAIA/gIVdPaTJvT+tf3s+8JbAvTyzqj3IFSk+AAAAAAAAAACmlIC9FgMxPYpPETx5J4G+Z8tEvKdBl70AAAAAAAAAAGZdxTwk/rA/2P93PSzppb7g/1o9phN0PQAAAAAAAAAA82upvTqlCj41rl09r/WAvvQS2zzXThi+AAAAAAAAAACAaaq9+L6WPuprqz0lUmG+Tg5tvJ6JCr0AAAAAAAAAADM1R7xb040/zX0evU1pdr7T1Aq996aYPAAAAAAAAAAARjgBvtP1ET9hkj09xohZvrJU9LxMSss8AAAAAAAAAABqL2q+IamTPzrrvr6i8JG+CtyrviweorwAAAAAAAAAAJpJyDwKFxQ4Ne+HO+wCVDzmaFY77Gw5PQAAgD8AAIA/zZI8PI8WV7qMzKM2s5CuMasiqjv2zMO1AACAPwAAgD8zd4i9U7DAP4KOZ74kXle+d4hHveFPmb0AAAAAAAAAAGbUSzwnu5o/25pbPKGZlr4omY88Th9GugAAAAAAAAAAgP6dPSlAcLpm/D+7v1dzuKG/rTqiJuE5AACAPwAAgD9ADpA9PIiTPw8PCj7PAo2+C936PZsaPb0AAAAAAAAAAOA7YD5p1UU/I6p2vveTm7455Vs9ku76vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9UnusAn5b0CUhpRSlIwBbJRNRgGMAXSUR0CQpiHBk7OndX2UKGgGaAloD0MInzws1JpFbkCUhpRSlGgVTSABaBZHQJCmWzE74i51fZQoaAZoCWgPQwieQq7U8xdwQJSGlFKUaBVNQAFoFkdAkKajIikftHV9lChoBmgJaA9DCB4zUBm/PHBAlIaUUpRoFU0zAWgWR0CQpzt3fQ8fdX2UKGgGaAloD0MIvobguEwjcUCUhpRSlGgVTXsBaBZHQJCoGQ6p5u91fZQoaAZoCWgPQwjPvvIg/XpxQJSGlFKUaBVNTwFoFkdAkKi/KuB+WnV9lChoBmgJaA9DCHaKVYPwkHBAlIaUUpRoFU0oAWgWR0CQqQMkQf6odX2UKGgGaAloD0MI0QfL2JAxcUCUhpRSlGgVTRsBaBZHQJCpmaScLBt1fZQoaAZoCWgPQwjutDUiGLRuQJSGlFKUaBVNMwFoFkdAkKpReb/ff3V9lChoBmgJaA9DCLFR1m/mHHFAlIaUUpRoFU1JAWgWR0CQqupz90ihdX2UKGgGaAloD0MIR1m/mZizbUCUhpRSlGgVTV8BaBZHQJCtfZ/Tb351fZQoaAZoCWgPQwjcZirEYwRxQJSGlFKUaBVNUAFoFkdAkK1+pjtojHV9lChoBmgJaA9DCJIIjWBjFW5AlIaUUpRoFU0jAWgWR0CQrbVd5Y5ldX2UKGgGaAloD0MIqtOBrCeucUCUhpRSlGgVTSkBaBZHQJCwaNCJGfB1fZQoaAZoCWgPQwgRVfgzPCFrQJSGlFKUaBVNKAFoFkdAkLCZMlC1JHV9lChoBmgJaA9DCPz9YrbkfG5AlIaUUpRoFU06AWgWR0CQsZMcp9ZzdX2UKGgGaAloD0MI/BcIAuQha0CUhpRSlGgVTUEBaBZHQJCyQA+6iCd1fZQoaAZoCWgPQwikw0MYP4VsQJSGlFKUaBVNOgFoFkdAkLJuY2Kl6HV9lChoBmgJaA9DCKqdYWrLbGxAlIaUUpRoFU03AWgWR0CQs0jhUBGQdX2UKGgGaAloD0MI8Q2Fz1YXcECUhpRSlGgVTXABaBZHQJCzu/KyOaR1fZQoaAZoCWgPQwg3+wPl9txyQJSGlFKUaBVNTwFoFkdAkLcy+QEIPnV9lChoBmgJaA9DCPGfbqDAMXFAlIaUUpRoFU0eAWgWR0CQt3WAwwj/dX2UKGgGaAloD0MIQC/cubCjbkCUhpRSlGgVTU4BaBZHQJC4NdAxBVx1fZQoaAZoCWgPQwi8eD9u/+xwQJSGlFKUaBVNPgFoFkdAkLhNkFwDNnV9lChoBmgJaA9DCPKVQEqs9nFAlIaUUpRoFU2YAWgWR0CQuQWepXIVdX2UKGgGaAloD0MI9Z81P76CckCUhpRSlGgVTScBaBZHQJC6mPjn3cp1fZQoaAZoCWgPQwizRGeZxbZwQJSGlFKUaBVNxwFoFkdAkLxePeYUnHV9lChoBmgJaA9DCBJNoIhFZ3FAlIaUUpRoFU1UAWgWR0CQvLtnf2sadX2UKGgGaAloD0MIZ/D3i1m4cECUhpRSlGgVTRkBaBZHQJC9GCg9Net1fZQoaAZoCWgPQwgrFOl+zgFuQJSGlFKUaBVNYQFoFkdAkL0/nB+F13V9lChoBmgJaA9DCJDXg0lxR3BAlIaUUpRoFU0iAWgWR0CQvnHB1s+FdX2UKGgGaAloD0MIOUNxx1sucUCUhpRSlGgVTRgBaBZHQJC+uhbnoxJ1fZQoaAZoCWgPQwh1zeSb7RlxQJSGlFKUaBVNNQFoFkdAkL7eqaPS2HV9lChoBmgJaA9DCNvgRPQrp3BAlIaUUpRoFU1eAWgWR0CQvuXKr7wbdX2UKGgGaAloD0MIUN8ypwuPckCUhpRSlGgVTXgBaBZHQJDAKJWNm191fZQoaAZoCWgPQwgPKJtyhV1yQJSGlFKUaBVNaAFoFkdAkMEy1E3KjnV9lChoBmgJaA9DCOkoB7OJl3BAlIaUUpRoFU0mAWgWR0CQwi3cpLEldX2UKGgGaAloD0MI0911NuT8b0CUhpRSlGgVTT8BaBZHQJDCVW/8EV51fZQoaAZoCWgPQwh9dVWgVvdxQJSGlFKUaBVNKgFoFkdAkMJc8s+V1XV9lChoBmgJaA9DCN8ZbVVSzHFAlIaUUpRoFU0UAWgWR0CQwztkFwDOdX2UKGgGaAloD0MIKq2/JUBYcECUhpRSlGgVTWABaBZHQJDDcRqXWvt1fZQoaAZoCWgPQwj8U6pEWSZvQJSGlFKUaBVNSgFoFkdAkMPA9/z8QHV9lChoBmgJaA9DCPJ4Wn6g8HFAlIaUUpRoFU0TAWgWR0CQxCsP8Q7LdX2UKGgGaAloD0MIKbLWUGqybkCUhpRSlGgVTTwBaBZHQJDFfES/TLJ1fZQoaAZoCWgPQwhA22rWWbJwQJSGlFKUaBVNPQFoFkdAkMYDzI3irHV9lChoBmgJaA9DCIPeG0NAkHJAlIaUUpRoFU1aAWgWR0CQxquoxYaHdX2UKGgGaAloD0MIR5G1hpIVckCUhpRSlGgVTVYBaBZHQJDa7P6be/J1fZQoaAZoCWgPQwiQ14NJ8UJxQJSGlFKUaBVNTwFoFkdAkNsGSQo1DXV9lChoBmgJaA9DCGzNVl5yb29AlIaUUpRoFU1QAWgWR0CQ2zRO1v2odX2UKGgGaAloD0MIQj9TrxuncECUhpRSlGgVTWwBaBZHQJDcBdxAB1d1fZQoaAZoCWgPQwh2/u2yX6ByQJSGlFKUaBVNOgFoFkdAkNwLGm1pkHV9lChoBmgJaA9DCA1RhT+Dv3FAlIaUUpRoFU0zAWgWR0CQ3L7F85S4dX2UKGgGaAloD0MI7RFqhtTBcECUhpRSlGgVTTABaBZHQJDdizC1qnF1fZQoaAZoCWgPQwjZlZaR+uRtQJSGlFKUaBVNLwFoFkdAkN2uq7yxzXV9lChoBmgJaA9DCF1wBn+/Gm1AlIaUUpRoFU00AWgWR0CQ3cs4T9KmdX2UKGgGaAloD0MIjjwQWSQMcUCUhpRSlGgVTSYBaBZHQJDev6k69011fZQoaAZoCWgPQwjXw5eJoiBxQJSGlFKUaBVNNQFoFkdAkN7XjU/fO3V9lChoBmgJaA9DCJRPj20ZwHFAlIaUUpRoFU1KAWgWR0CQ3y1BMSK4dX2UKGgGaAloD0MIAMXIkvnBcECUhpRSlGgVTTMBaBZHQJDfd4KQaJh1fZQoaAZoCWgPQwiPxMvT+cVxQJSGlFKUaBVNRAFoFkdAkOFKdhAnlXV9lChoBmgJaA9DCHwKgPFMqXBAlIaUUpRoFU1DAWgWR0CQ4dW8yvcKdX2UKGgGaAloD0MIl+ZWCKtBckCUhpRSlGgVTQsBaBZHQJDihiVjZth1fZQoaAZoCWgPQwg334juWRxtQJSGlFKUaBVNWQFoFkdAkONP6XSjQHV9lChoBmgJaA9DCMU9lj50jmxAlIaUUpRoFU03AWgWR0CQ46t/4IrwdX2UKGgGaAloD0MIaD18meg7cUCUhpRSlGgVTUcBaBZHQJDkRMYdhiN1fZQoaAZoCWgPQwhx5eydUfJwQJSGlFKUaBVNJgFoFkdAkOWXkkrwv3V9lChoBmgJaA9DCF/Tg4JS8W9AlIaUUpRoFU1DAWgWR0CQ5aXdCVrzdX2UKGgGaAloD0MIPQytTg70cECUhpRSlGgVTRcBaBZHQJDmNE5Qxet1fZQoaAZoCWgPQwhd/dgkPwBuQJSGlFKUaBVNXQFoFkdAkObGiHqNZXV9lChoBmgJaA9DCP0TXKwolW9AlIaUUpRoFU0wAWgWR0CQ52Mmnfl7dX2UKGgGaAloD0MIm3XG9wUAcUCUhpRSlGgVTTMBaBZHQJDpRQ66reZ1fZQoaAZoCWgPQwiXkA96dhpyQJSGlFKUaBVNXQFoFkdAkOlpv99+gHV9lChoBmgJaA9DCPLuyFht+m9AlIaUUpRoFU0xAWgWR0CQ6cHPeHi4dX2UKGgGaAloD0MIUTOkiuItckCUhpRSlGgVTVkBaBZHQJDqsM/hVEN1fZQoaAZoCWgPQwgG8YEdf8pwQJSGlFKUaBVNWAFoFkdAkOvGe18b73V9lChoBmgJaA9DCAtD5PR15m1AlIaUUpRoFU0/AWgWR0CQ7oOLiuMddX2UKGgGaAloD0MIlIRE2gatcUCUhpRSlGgVTScBaBZHQJDvoE8q4H51fZQoaAZoCWgPQwj6JeKtc3FvQJSGlFKUaBVNkgFoFkdAkPH1ByCFsnV9lChoBmgJaA9DCGTll8EYHXBAlIaUUpRoFU1uAWgWR0CQ8i4T9KmLdX2UKGgGaAloD0MIkDLiAtB0bUCUhpRSlGgVTU8BaBZHQJDyYYNy5qd1fZQoaAZoCWgPQwi/1qVGKM1xQJSGlFKUaBVNQwFoFkdAkPKyxVyWA3V9lChoBmgJaA9DCKKcaFehAHJAlIaUUpRoFU02AWgWR0CQ83eMQ2/BdX2UKGgGaAloD0MIguMyburUcECUhpRSlGgVTUABaBZHQJDz1peu3c51fZQoaAZoCWgPQwiAnZs24zhuQJSGlFKUaBVNOwFoFkdAkPQt/OMVDnV9lChoBmgJaA9DCJcC0v5HXnJAlIaUUpRoFU07AWgWR0CQ9LF1jiGWdX2UKGgGaAloD0MIQwHbwQgabECUhpRSlGgVTRcBaBZHQJD1rGKhtch1fZQoaAZoCWgPQwhYkGYs2lZyQJSGlFKUaBVNFwFoFkdAkPXG0eEIxHV9lChoBmgJaA9DCN1e0hht0XFAlIaUUpRoFU1UAWgWR0CQ9iuivgWKdX2UKGgGaAloD0MIMsaH2QuCckCUhpRSlGgVTTYBaBZHQJD3GW2PT5R1fZQoaAZoCWgPQwjr/xzmS3ByQJSGlFKUaBVNOAFoFkdAkPfr6+FlCnV9lChoBmgJaA9DCHE5XoFoi3FAlIaUUpRoFU0pAWgWR0CQ+DtOVPepdX2UKGgGaAloD0MI9HAC0ymycECUhpRSlGgVTSgBaBZHQJD5rfLs8gZ1fZQoaAZoCWgPQwg9uhEWlQJuQJSGlFKUaBVNOQFoFkdAkPrL+T/yXnV9lChoBmgJaA9DCDCCxkxi2HFAlIaUUpRoFU0vAWgWR0CQ/EnUlRgrdX2UKGgGaAloD0MIhUGZRtPvcECUhpRSlGgVTTkBaBZHQJD8Ylv60pp1fZQoaAZoCWgPQwi+2lGcI7hwQJSGlFKUaBVNEgFoFkdAkPyBCdBjWnV9lChoBmgJaA9DCDfeHRmrQm5AlIaUUpRoFU0pAWgWR0CQ/Kntv4ucdX2UKGgGaAloD0MI6NhBJa75b0CUhpRSlGgVTU0BaBZHQJD8vJW/8EV1fZQoaAZoCWgPQwgUP8bcNZRxQJSGlFKUaBVNJwFoFkdAkPzYoE0SAnV9lChoBmgJaA9DCFCJ6xgXAHJAlIaUUpRoFU1VAWgWR0CQ/QyO7xusdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee6a48a73bd51a69a6b71c03b323a7747fc7878bd4cac3f6e20d33a8f6a0d6a
3
+ size 147429
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efdf41ec4c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efdf41ec550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efdf41ec5e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efdf41ec670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efdf41ec700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efdf41ec790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efdf41ec820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efdf41ec8b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efdf41ec940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efdf41ec9d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efdf41eca60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efdf41ecaf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efdf41ee240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679553291477766114,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBswr2FRbG7lZAUPT6AFj1D/R298+r4PQAAgD8AAIA/gIVdPaTJvT+tf3s+8JbAvTyzqj3IFSk+AAAAAAAAAACmlIC9FgMxPYpPETx5J4G+Z8tEvKdBl70AAAAAAAAAAGZdxTwk/rA/2P93PSzppb7g/1o9phN0PQAAAAAAAAAA82upvTqlCj41rl09r/WAvvQS2zzXThi+AAAAAAAAAACAaaq9+L6WPuprqz0lUmG+Tg5tvJ6JCr0AAAAAAAAAADM1R7xb040/zX0evU1pdr7T1Aq996aYPAAAAAAAAAAARjgBvtP1ET9hkj09xohZvrJU9LxMSss8AAAAAAAAAABqL2q+IamTPzrrvr6i8JG+CtyrviweorwAAAAAAAAAAJpJyDwKFxQ4Ne+HO+wCVDzmaFY77Gw5PQAAgD8AAIA/zZI8PI8WV7qMzKM2s5CuMasiqjv2zMO1AACAPwAAgD8zd4i9U7DAP4KOZ74kXle+d4hHveFPmb0AAAAAAAAAAGbUSzwnu5o/25pbPKGZlr4omY88Th9GugAAAAAAAAAAgP6dPSlAcLpm/D+7v1dzuKG/rTqiJuE5AACAPwAAgD9ADpA9PIiTPw8PCj7PAo2+C936PZsaPb0AAAAAAAAAAOA7YD5p1UU/I6p2vveTm7455Vs9ku76vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9UnusAn5b0CUhpRSlIwBbJRNRgGMAXSUR0CQpiHBk7OndX2UKGgGaAloD0MInzws1JpFbkCUhpRSlGgVTSABaBZHQJCmWzE74i51fZQoaAZoCWgPQwieQq7U8xdwQJSGlFKUaBVNQAFoFkdAkKajIikftHV9lChoBmgJaA9DCB4zUBm/PHBAlIaUUpRoFU0zAWgWR0CQpzt3fQ8fdX2UKGgGaAloD0MIvobguEwjcUCUhpRSlGgVTXsBaBZHQJCoGQ6p5u91fZQoaAZoCWgPQwjPvvIg/XpxQJSGlFKUaBVNTwFoFkdAkKi/KuB+WnV9lChoBmgJaA9DCHaKVYPwkHBAlIaUUpRoFU0oAWgWR0CQqQMkQf6odX2UKGgGaAloD0MI0QfL2JAxcUCUhpRSlGgVTRsBaBZHQJCpmaScLBt1fZQoaAZoCWgPQwjutDUiGLRuQJSGlFKUaBVNMwFoFkdAkKpReb/ff3V9lChoBmgJaA9DCLFR1m/mHHFAlIaUUpRoFU1JAWgWR0CQqupz90ihdX2UKGgGaAloD0MIR1m/mZizbUCUhpRSlGgVTV8BaBZHQJCtfZ/Tb351fZQoaAZoCWgPQwjcZirEYwRxQJSGlFKUaBVNUAFoFkdAkK1+pjtojHV9lChoBmgJaA9DCJIIjWBjFW5AlIaUUpRoFU0jAWgWR0CQrbVd5Y5ldX2UKGgGaAloD0MIqtOBrCeucUCUhpRSlGgVTSkBaBZHQJCwaNCJGfB1fZQoaAZoCWgPQwgRVfgzPCFrQJSGlFKUaBVNKAFoFkdAkLCZMlC1JHV9lChoBmgJaA9DCPz9YrbkfG5AlIaUUpRoFU06AWgWR0CQsZMcp9ZzdX2UKGgGaAloD0MI/BcIAuQha0CUhpRSlGgVTUEBaBZHQJCyQA+6iCd1fZQoaAZoCWgPQwikw0MYP4VsQJSGlFKUaBVNOgFoFkdAkLJuY2Kl6HV9lChoBmgJaA9DCKqdYWrLbGxAlIaUUpRoFU03AWgWR0CQs0jhUBGQdX2UKGgGaAloD0MI8Q2Fz1YXcECUhpRSlGgVTXABaBZHQJCzu/KyOaR1fZQoaAZoCWgPQwg3+wPl9txyQJSGlFKUaBVNTwFoFkdAkLcy+QEIPnV9lChoBmgJaA9DCPGfbqDAMXFAlIaUUpRoFU0eAWgWR0CQt3WAwwj/dX2UKGgGaAloD0MIQC/cubCjbkCUhpRSlGgVTU4BaBZHQJC4NdAxBVx1fZQoaAZoCWgPQwi8eD9u/+xwQJSGlFKUaBVNPgFoFkdAkLhNkFwDNnV9lChoBmgJaA9DCPKVQEqs9nFAlIaUUpRoFU2YAWgWR0CQuQWepXIVdX2UKGgGaAloD0MI9Z81P76CckCUhpRSlGgVTScBaBZHQJC6mPjn3cp1fZQoaAZoCWgPQwizRGeZxbZwQJSGlFKUaBVNxwFoFkdAkLxePeYUnHV9lChoBmgJaA9DCBJNoIhFZ3FAlIaUUpRoFU1UAWgWR0CQvLtnf2sadX2UKGgGaAloD0MIZ/D3i1m4cECUhpRSlGgVTRkBaBZHQJC9GCg9Net1fZQoaAZoCWgPQwgrFOl+zgFuQJSGlFKUaBVNYQFoFkdAkL0/nB+F13V9lChoBmgJaA9DCJDXg0lxR3BAlIaUUpRoFU0iAWgWR0CQvnHB1s+FdX2UKGgGaAloD0MIOUNxx1sucUCUhpRSlGgVTRgBaBZHQJC+uhbnoxJ1fZQoaAZoCWgPQwh1zeSb7RlxQJSGlFKUaBVNNQFoFkdAkL7eqaPS2HV9lChoBmgJaA9DCNvgRPQrp3BAlIaUUpRoFU1eAWgWR0CQvuXKr7wbdX2UKGgGaAloD0MIUN8ypwuPckCUhpRSlGgVTXgBaBZHQJDAKJWNm191fZQoaAZoCWgPQwgPKJtyhV1yQJSGlFKUaBVNaAFoFkdAkMEy1E3KjnV9lChoBmgJaA9DCOkoB7OJl3BAlIaUUpRoFU0mAWgWR0CQwi3cpLEldX2UKGgGaAloD0MI0911NuT8b0CUhpRSlGgVTT8BaBZHQJDCVW/8EV51fZQoaAZoCWgPQwh9dVWgVvdxQJSGlFKUaBVNKgFoFkdAkMJc8s+V1XV9lChoBmgJaA9DCN8ZbVVSzHFAlIaUUpRoFU0UAWgWR0CQwztkFwDOdX2UKGgGaAloD0MIKq2/JUBYcECUhpRSlGgVTWABaBZHQJDDcRqXWvt1fZQoaAZoCWgPQwj8U6pEWSZvQJSGlFKUaBVNSgFoFkdAkMPA9/z8QHV9lChoBmgJaA9DCPJ4Wn6g8HFAlIaUUpRoFU0TAWgWR0CQxCsP8Q7LdX2UKGgGaAloD0MIKbLWUGqybkCUhpRSlGgVTTwBaBZHQJDFfES/TLJ1fZQoaAZoCWgPQwhA22rWWbJwQJSGlFKUaBVNPQFoFkdAkMYDzI3irHV9lChoBmgJaA9DCIPeG0NAkHJAlIaUUpRoFU1aAWgWR0CQxquoxYaHdX2UKGgGaAloD0MIR5G1hpIVckCUhpRSlGgVTVYBaBZHQJDa7P6be/J1fZQoaAZoCWgPQwiQ14NJ8UJxQJSGlFKUaBVNTwFoFkdAkNsGSQo1DXV9lChoBmgJaA9DCGzNVl5yb29AlIaUUpRoFU1QAWgWR0CQ2zRO1v2odX2UKGgGaAloD0MIQj9TrxuncECUhpRSlGgVTWwBaBZHQJDcBdxAB1d1fZQoaAZoCWgPQwh2/u2yX6ByQJSGlFKUaBVNOgFoFkdAkNwLGm1pkHV9lChoBmgJaA9DCA1RhT+Dv3FAlIaUUpRoFU0zAWgWR0CQ3L7F85S4dX2UKGgGaAloD0MI7RFqhtTBcECUhpRSlGgVTTABaBZHQJDdizC1qnF1fZQoaAZoCWgPQwjZlZaR+uRtQJSGlFKUaBVNLwFoFkdAkN2uq7yxzXV9lChoBmgJaA9DCF1wBn+/Gm1AlIaUUpRoFU00AWgWR0CQ3cs4T9KmdX2UKGgGaAloD0MIjjwQWSQMcUCUhpRSlGgVTSYBaBZHQJDev6k69011fZQoaAZoCWgPQwjXw5eJoiBxQJSGlFKUaBVNNQFoFkdAkN7XjU/fO3V9lChoBmgJaA9DCJRPj20ZwHFAlIaUUpRoFU1KAWgWR0CQ3y1BMSK4dX2UKGgGaAloD0MIAMXIkvnBcECUhpRSlGgVTTMBaBZHQJDfd4KQaJh1fZQoaAZoCWgPQwiPxMvT+cVxQJSGlFKUaBVNRAFoFkdAkOFKdhAnlXV9lChoBmgJaA9DCHwKgPFMqXBAlIaUUpRoFU1DAWgWR0CQ4dW8yvcKdX2UKGgGaAloD0MIl+ZWCKtBckCUhpRSlGgVTQsBaBZHQJDihiVjZth1fZQoaAZoCWgPQwg334juWRxtQJSGlFKUaBVNWQFoFkdAkONP6XSjQHV9lChoBmgJaA9DCMU9lj50jmxAlIaUUpRoFU03AWgWR0CQ46t/4IrwdX2UKGgGaAloD0MIaD18meg7cUCUhpRSlGgVTUcBaBZHQJDkRMYdhiN1fZQoaAZoCWgPQwhx5eydUfJwQJSGlFKUaBVNJgFoFkdAkOWXkkrwv3V9lChoBmgJaA9DCF/Tg4JS8W9AlIaUUpRoFU1DAWgWR0CQ5aXdCVrzdX2UKGgGaAloD0MIPQytTg70cECUhpRSlGgVTRcBaBZHQJDmNE5Qxet1fZQoaAZoCWgPQwhd/dgkPwBuQJSGlFKUaBVNXQFoFkdAkObGiHqNZXV9lChoBmgJaA9DCP0TXKwolW9AlIaUUpRoFU0wAWgWR0CQ52Mmnfl7dX2UKGgGaAloD0MIm3XG9wUAcUCUhpRSlGgVTTMBaBZHQJDpRQ66reZ1fZQoaAZoCWgPQwiXkA96dhpyQJSGlFKUaBVNXQFoFkdAkOlpv99+gHV9lChoBmgJaA9DCPLuyFht+m9AlIaUUpRoFU0xAWgWR0CQ6cHPeHi4dX2UKGgGaAloD0MIUTOkiuItckCUhpRSlGgVTVkBaBZHQJDqsM/hVEN1fZQoaAZoCWgPQwgG8YEdf8pwQJSGlFKUaBVNWAFoFkdAkOvGe18b73V9lChoBmgJaA9DCAtD5PR15m1AlIaUUpRoFU0/AWgWR0CQ7oOLiuMddX2UKGgGaAloD0MIlIRE2gatcUCUhpRSlGgVTScBaBZHQJDvoE8q4H51fZQoaAZoCWgPQwj6JeKtc3FvQJSGlFKUaBVNkgFoFkdAkPH1ByCFsnV9lChoBmgJaA9DCGTll8EYHXBAlIaUUpRoFU1uAWgWR0CQ8i4T9KmLdX2UKGgGaAloD0MIkDLiAtB0bUCUhpRSlGgVTU8BaBZHQJDyYYNy5qd1fZQoaAZoCWgPQwi/1qVGKM1xQJSGlFKUaBVNQwFoFkdAkPKyxVyWA3V9lChoBmgJaA9DCKKcaFehAHJAlIaUUpRoFU02AWgWR0CQ83eMQ2/BdX2UKGgGaAloD0MIguMyburUcECUhpRSlGgVTUABaBZHQJDz1peu3c51fZQoaAZoCWgPQwiAnZs24zhuQJSGlFKUaBVNOwFoFkdAkPQt/OMVDnV9lChoBmgJaA9DCJcC0v5HXnJAlIaUUpRoFU07AWgWR0CQ9LF1jiGWdX2UKGgGaAloD0MIQwHbwQgabECUhpRSlGgVTRcBaBZHQJD1rGKhtch1fZQoaAZoCWgPQwhYkGYs2lZyQJSGlFKUaBVNFwFoFkdAkPXG0eEIxHV9lChoBmgJaA9DCN1e0hht0XFAlIaUUpRoFU1UAWgWR0CQ9iuivgWKdX2UKGgGaAloD0MIMsaH2QuCckCUhpRSlGgVTTYBaBZHQJD3GW2PT5R1fZQoaAZoCWgPQwjr/xzmS3ByQJSGlFKUaBVNOAFoFkdAkPfr6+FlCnV9lChoBmgJaA9DCHE5XoFoi3FAlIaUUpRoFU0pAWgWR0CQ+DtOVPepdX2UKGgGaAloD0MI9HAC0ymycECUhpRSlGgVTSgBaBZHQJD5rfLs8gZ1fZQoaAZoCWgPQwg9uhEWlQJuQJSGlFKUaBVNOQFoFkdAkPrL+T/yXnV9lChoBmgJaA9DCDCCxkxi2HFAlIaUUpRoFU0vAWgWR0CQ/EnUlRgrdX2UKGgGaAloD0MIhUGZRtPvcECUhpRSlGgVTTkBaBZHQJD8Ylv60pp1fZQoaAZoCWgPQwi+2lGcI7hwQJSGlFKUaBVNEgFoFkdAkPyBCdBjWnV9lChoBmgJaA9DCDfeHRmrQm5AlIaUUpRoFU0pAWgWR0CQ/Kntv4ucdX2UKGgGaAloD0MI6NhBJa75b0CUhpRSlGgVTU0BaBZHQJD8vJW/8EV1fZQoaAZoCWgPQwgUP8bcNZRxQJSGlFKUaBVNJwFoFkdAkPzYoE0SAnV9lChoBmgJaA9DCFCJ6xgXAHJAlIaUUpRoFU1VAWgWR0CQ/QyO7xusdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e0e612ae333d33d0b10d2f0a358bf50dbea53d341315d89c15944e26da32b23
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb6d513de599fd9a3dad187a7b86925fc326339b90ff61c541d29c79f4fdc48f
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (218 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.3399116284041, "std_reward": 19.129198180263387, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T06:53:27.974364"}