--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-cs-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: cs split: test args: cs metrics: - name: Wer type: wer value: 0.13424044564175153 --- # wav2vec2-large-xls-r-300m-cs-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1447 - Wer: 0.1342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 3.3706 | 0.5485 | 500 | 3.4060 | 1.0 | | 3.2801 | 1.0971 | 1000 | 3.2557 | 1.0 | | 0.7687 | 1.6456 | 1500 | 0.4183 | 0.3893 | | 0.515 | 2.1942 | 2000 | 0.2665 | 0.2576 | | 0.4229 | 2.7427 | 2500 | 0.2231 | 0.2245 | | 0.345 | 3.2913 | 3000 | 0.2010 | 0.2019 | | 0.3364 | 3.8398 | 3500 | 0.1865 | 0.1874 | | 0.2881 | 4.3884 | 4000 | 0.1759 | 0.1741 | | 0.304 | 4.9369 | 4500 | 0.1684 | 0.1693 | | 0.2849 | 5.4855 | 5000 | 0.1695 | 0.1683 | | 0.2492 | 6.0340 | 5500 | 0.1634 | 0.1596 | | 0.2419 | 6.5826 | 6000 | 0.1606 | 0.1569 | | 0.2282 | 7.1311 | 6500 | 0.1566 | 0.1520 | | 0.2233 | 7.6796 | 7000 | 0.1549 | 0.1506 | | 0.2063 | 8.2282 | 7500 | 0.1537 | 0.1489 | | 0.2045 | 8.7767 | 8000 | 0.1541 | 0.1499 | | 0.2127 | 9.3253 | 8500 | 0.1545 | 0.1446 | | 0.1954 | 9.8738 | 9000 | 0.1509 | 0.1422 | | 0.1931 | 10.4224 | 9500 | 0.1532 | 0.1419 | | 0.2022 | 10.9709 | 10000 | 0.1472 | 0.1404 | | 0.1868 | 11.5195 | 10500 | 0.1472 | 0.1373 | | 0.1852 | 12.0680 | 11000 | 0.1469 | 0.1377 | | 0.1817 | 12.6166 | 11500 | 0.1473 | 0.1374 | | 0.1941 | 13.1651 | 12000 | 0.1443 | 0.1360 | | 0.1632 | 13.7137 | 12500 | 0.1464 | 0.1342 | | 0.1705 | 14.2622 | 13000 | 0.1451 | 0.1348 | | 0.1725 | 14.8108 | 13500 | 0.1447 | 0.1342 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1