--- library_name: peft language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mesolitica/IMDA-TTS metrics: - wer model-index: - name: Whisper Small NSC small (500 steps) - Jarrett Er results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: NSC Small section type: mesolitica/IMDA-TTS split: None args: 'config: en, split: train' metrics: - type: wer value: 3.0164184803360063 name: Wer --- # Whisper Small NSC small (500 steps) - Jarrett Er This model is a fine-tuned version of [Thecoder3281f/whisper-small-hi-commonvoice17-1000](https://huggingface.co/Thecoder3281f/whisper-small-hi-commonvoice17-1000) on the NSC Small section dataset. It achieves the following results on the evaluation set: - Loss: 0.0777 - Wer: 3.0164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0822 | 0.8850 | 100 | 0.0686 | 3.0164 | | 0.0585 | 1.7699 | 200 | 0.0700 | 3.0928 | | 0.0317 | 2.6549 | 300 | 0.0726 | 3.0546 | | 0.0184 | 3.5398 | 400 | 0.0781 | 3.2455 | | 0.0194 | 4.4248 | 500 | 0.0777 | 3.0164 | ### Framework versions - PEFT 0.14.0 - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.1.dev0 - Tokenizers 0.20.3