Theivaprakasham
commited on
Commit
•
5100120
1
Parent(s):
8723476
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- wild_receipt
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-wildreceipt
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: wild_receipt
|
19 |
+
type: wild_receipt
|
20 |
+
args: WildReceipt
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.877212237618329
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.8798678959680749
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.8785380599065679
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.9249204782274871
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# layoutlmv3-finetuned-wildreceipt
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wild_receipt dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.3108
|
44 |
+
- Precision: 0.8772
|
45 |
+
- Recall: 0.8799
|
46 |
+
- F1: 0.8785
|
47 |
+
- Accuracy: 0.9249
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-05
|
67 |
+
- train_batch_size: 4
|
68 |
+
- eval_batch_size: 4
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 4000
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 0.32 | 100 | 1.3143 | 0.6709 | 0.2679 | 0.3829 | 0.6700 |
|
79 |
+
| No log | 0.63 | 200 | 0.8814 | 0.6478 | 0.5195 | 0.5766 | 0.7786 |
|
80 |
+
| No log | 0.95 | 300 | 0.6568 | 0.7205 | 0.6491 | 0.6829 | 0.8303 |
|
81 |
+
| No log | 1.26 | 400 | 0.5618 | 0.7544 | 0.7072 | 0.7300 | 0.8519 |
|
82 |
+
| 1.0284 | 1.58 | 500 | 0.5003 | 0.7802 | 0.7566 | 0.7682 | 0.8687 |
|
83 |
+
| 1.0284 | 1.89 | 600 | 0.4454 | 0.7941 | 0.7679 | 0.7807 | 0.8748 |
|
84 |
+
| 1.0284 | 2.21 | 700 | 0.4314 | 0.8142 | 0.7928 | 0.8033 | 0.8852 |
|
85 |
+
| 1.0284 | 2.52 | 800 | 0.3870 | 0.8172 | 0.8200 | 0.8186 | 0.8953 |
|
86 |
+
| 1.0284 | 2.84 | 900 | 0.3629 | 0.8288 | 0.8369 | 0.8329 | 0.9025 |
|
87 |
+
| 0.4167 | 3.15 | 1000 | 0.3537 | 0.8540 | 0.8200 | 0.8366 | 0.9052 |
|
88 |
+
| 0.4167 | 3.47 | 1100 | 0.3383 | 0.8438 | 0.8285 | 0.8361 | 0.9063 |
|
89 |
+
| 0.4167 | 3.79 | 1200 | 0.3403 | 0.8297 | 0.8493 | 0.8394 | 0.9062 |
|
90 |
+
| 0.4167 | 4.1 | 1300 | 0.3271 | 0.8428 | 0.8545 | 0.8487 | 0.9110 |
|
91 |
+
| 0.4167 | 4.42 | 1400 | 0.3182 | 0.8491 | 0.8518 | 0.8504 | 0.9131 |
|
92 |
+
| 0.2766 | 4.73 | 1500 | 0.3111 | 0.8491 | 0.8539 | 0.8515 | 0.9129 |
|
93 |
+
| 0.2766 | 5.05 | 1600 | 0.3177 | 0.8397 | 0.8620 | 0.8507 | 0.9124 |
|
94 |
+
| 0.2766 | 5.36 | 1700 | 0.3091 | 0.8676 | 0.8548 | 0.8612 | 0.9191 |
|
95 |
+
| 0.2766 | 5.68 | 1800 | 0.3080 | 0.8508 | 0.8645 | 0.8576 | 0.9162 |
|
96 |
+
| 0.2766 | 5.99 | 1900 | 0.3059 | 0.8492 | 0.8662 | 0.8576 | 0.9163 |
|
97 |
+
| 0.2114 | 6.31 | 2000 | 0.3184 | 0.8536 | 0.8657 | 0.8596 | 0.9147 |
|
98 |
+
| 0.2114 | 6.62 | 2100 | 0.3161 | 0.8583 | 0.8713 | 0.8648 | 0.9184 |
|
99 |
+
| 0.2114 | 6.94 | 2200 | 0.3055 | 0.8707 | 0.8682 | 0.8694 | 0.9220 |
|
100 |
+
| 0.2114 | 7.26 | 2300 | 0.3004 | 0.8689 | 0.8745 | 0.8717 | 0.9219 |
|
101 |
+
| 0.2114 | 7.57 | 2400 | 0.3111 | 0.8701 | 0.8720 | 0.8711 | 0.9211 |
|
102 |
+
| 0.174 | 7.89 | 2500 | 0.3130 | 0.8599 | 0.8741 | 0.8669 | 0.9198 |
|
103 |
+
| 0.174 | 8.2 | 2600 | 0.3034 | 0.8661 | 0.8748 | 0.8704 | 0.9219 |
|
104 |
+
| 0.174 | 8.52 | 2700 | 0.3005 | 0.8799 | 0.8673 | 0.8736 | 0.9225 |
|
105 |
+
| 0.174 | 8.83 | 2800 | 0.3043 | 0.8687 | 0.8804 | 0.8745 | 0.9240 |
|
106 |
+
| 0.174 | 9.15 | 2900 | 0.3121 | 0.8776 | 0.8704 | 0.8740 | 0.9242 |
|
107 |
+
| 0.1412 | 9.46 | 3000 | 0.3131 | 0.8631 | 0.8755 | 0.8692 | 0.9204 |
|
108 |
+
| 0.1412 | 9.78 | 3100 | 0.3067 | 0.8715 | 0.8773 | 0.8744 | 0.9233 |
|
109 |
+
| 0.1412 | 10.09 | 3200 | 0.3021 | 0.8751 | 0.8812 | 0.8782 | 0.9248 |
|
110 |
+
| 0.1412 | 10.41 | 3300 | 0.3092 | 0.8651 | 0.8808 | 0.8729 | 0.9228 |
|
111 |
+
| 0.1412 | 10.73 | 3400 | 0.3084 | 0.8776 | 0.8749 | 0.8762 | 0.9237 |
|
112 |
+
| 0.1254 | 11.04 | 3500 | 0.3156 | 0.8738 | 0.8785 | 0.8761 | 0.9237 |
|
113 |
+
| 0.1254 | 11.36 | 3600 | 0.3131 | 0.8723 | 0.8818 | 0.8770 | 0.9244 |
|
114 |
+
| 0.1254 | 11.67 | 3700 | 0.3108 | 0.8778 | 0.8781 | 0.8780 | 0.9250 |
|
115 |
+
| 0.1254 | 11.99 | 3800 | 0.3097 | 0.8778 | 0.8771 | 0.8775 | 0.9239 |
|
116 |
+
| 0.1254 | 12.3 | 3900 | 0.3115 | 0.8785 | 0.8801 | 0.8793 | 0.9251 |
|
117 |
+
| 0.111 | 12.62 | 4000 | 0.3108 | 0.8772 | 0.8799 | 0.8785 | 0.9249 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.20.0.dev0
|
123 |
+
- Pytorch 1.11.0+cu113
|
124 |
+
- Datasets 2.2.2
|
125 |
+
- Tokenizers 0.12.1
|