Theon1130 commited on
Commit
0ece503
·
1 Parent(s): e076196
VQARADQformer/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /workspace/ROCO_pmc_llava-v1.6-mistral_qfomer
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
VQARADQformer/adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "LlavaMistralForCausalLM",
5
+ "parent_library": "llava.model.language_model.llava_mistral"
6
+ },
7
+ "base_model_name_or_path": "/workspace/ROCO_pmc_llava-v1.6-mistral_qfomer",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "mm_projector",
22
+ "query_tokens",
23
+ "post_projection",
24
+ "projection"
25
+ ],
26
+ "peft_type": "LORA",
27
+ "r": 16,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "q_proj",
32
+ "gate_proj",
33
+ "v_proj",
34
+ "down_proj",
35
+ "k_proj",
36
+ "up_proj"
37
+ ],
38
+ "task_type": null,
39
+ "use_dora": false,
40
+ "use_rslora": false
41
+ }
VQARADQformer/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceb1ae940353e6b6210220d0e9da3f7a45a7b3f3cf13989f03b54d4908e04cfa
3
+ size 126715784
VQARADQformer/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fb82d6ebe25102ea403df58aad611381e5b65a316fb950f364448549d2d8a4b
3
+ size 4792
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /workspace/ROCO_pmc_llava-v1.6-mistral_qfomer
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "LlavaMistralForCausalLM",
5
+ "parent_library": "llava.model.language_model.llava_mistral"
6
+ },
7
+ "base_model_name_or_path": "/workspace/ROCO_pmc_llava-v1.6-mistral_qfomer",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "mm_projector",
22
+ "query_tokens",
23
+ "post_projection",
24
+ "projection"
25
+ ],
26
+ "peft_type": "LORA",
27
+ "r": 16,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "q_proj",
32
+ "gate_proj",
33
+ "v_proj",
34
+ "down_proj",
35
+ "k_proj",
36
+ "up_proj"
37
+ ],
38
+ "task_type": null,
39
+ "use_dora": false,
40
+ "use_rslora": false
41
+ }
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceb1ae940353e6b6210220d0e9da3f7a45a7b3f3cf13989f03b54d4908e04cfa
3
+ size 126715784
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a3ca3603fba5490b0e462e7910a4b36960a61a7dddb3af74baf415c9c47d579
3
+ size 235244382
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51def08afacaca5e0081db7583900ac5b21e1c142b3fb68bacc832d346402f93
3
+ size 14244
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cc0a2ec6a5a0e5c2aad0c70581ed4fe830f5ed4fe8100cd54232df8cd96022d
3
+ size 1000
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6763745546340942,
3
+ "best_model_checkpoint": "/workspace/checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100",
4
+ "epoch": 1.7837235228539576,
5
+ "eval_steps": 25,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 5e-06,
14
+ "loss": 3.6094,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "learning_rate": 1e-05,
20
+ "loss": 3.7344,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.05,
25
+ "learning_rate": 1.5000000000000002e-05,
26
+ "loss": 3.75,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.07,
31
+ "learning_rate": 2e-05,
32
+ "loss": 3.5625,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.09,
37
+ "learning_rate": 1.9995769500822007e-05,
38
+ "loss": 2.3125,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.11,
43
+ "learning_rate": 1.9983081582712684e-05,
44
+ "loss": 2.0,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.12,
49
+ "learning_rate": 1.9961946980917457e-05,
50
+ "loss": 1.8203,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.14,
55
+ "learning_rate": 1.9932383577419432e-05,
56
+ "loss": 1.2812,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.16,
61
+ "learning_rate": 1.9894416385809444e-05,
62
+ "loss": 0.8438,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.18,
67
+ "learning_rate": 1.9848077530122083e-05,
68
+ "loss": 0.875,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.2,
73
+ "learning_rate": 1.9793406217655516e-05,
74
+ "loss": 0.793,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.21,
79
+ "learning_rate": 1.973044870579824e-05,
80
+ "loss": 1.0312,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.23,
85
+ "learning_rate": 1.9659258262890683e-05,
86
+ "loss": 0.9648,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.25,
91
+ "learning_rate": 1.957989512315489e-05,
92
+ "loss": 1.1094,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.27,
97
+ "learning_rate": 1.949242643573034e-05,
98
+ "loss": 0.8281,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.29,
103
+ "learning_rate": 1.9396926207859085e-05,
104
+ "loss": 0.6602,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.3,
109
+ "learning_rate": 1.9293475242268224e-05,
110
+ "loss": 0.9688,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.32,
115
+ "learning_rate": 1.9182161068802742e-05,
116
+ "loss": 0.6641,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.34,
121
+ "learning_rate": 1.9063077870366504e-05,
122
+ "loss": 1.0781,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.36,
127
+ "learning_rate": 1.8936326403234125e-05,
128
+ "loss": 1.0,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.37,
133
+ "learning_rate": 1.880201391180111e-05,
134
+ "loss": 0.8086,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.39,
139
+ "learning_rate": 1.866025403784439e-05,
140
+ "loss": 0.7227,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.41,
145
+ "learning_rate": 1.8511166724369997e-05,
146
+ "loss": 0.6406,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.43,
151
+ "learning_rate": 1.8354878114129368e-05,
152
+ "loss": 0.8906,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.45,
157
+ "learning_rate": 1.819152044288992e-05,
158
+ "loss": 0.7656,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.45,
163
+ "eval_loss": 0.7382526993751526,
164
+ "eval_runtime": 2683.2319,
165
+ "eval_samples_per_second": 0.168,
166
+ "eval_steps_per_second": 0.084,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.46,
171
+ "learning_rate": 1.802123192755044e-05,
172
+ "loss": 1.0312,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.48,
177
+ "learning_rate": 1.784415664919576e-05,
178
+ "loss": 0.7656,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.5,
183
+ "learning_rate": 1.766044443118978e-05,
184
+ "loss": 0.7539,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.52,
189
+ "learning_rate": 1.7470250712409963e-05,
190
+ "loss": 0.6562,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.54,
195
+ "learning_rate": 1.7273736415730488e-05,
196
+ "loss": 0.5938,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.55,
201
+ "learning_rate": 1.7071067811865477e-05,
202
+ "loss": 0.7852,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.57,
207
+ "learning_rate": 1.686241637868734e-05,
208
+ "loss": 0.5352,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.59,
213
+ "learning_rate": 1.6647958656139377e-05,
214
+ "loss": 0.6875,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.61,
219
+ "learning_rate": 1.6427876096865394e-05,
220
+ "loss": 0.6406,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.62,
225
+ "learning_rate": 1.6202354912682602e-05,
226
+ "loss": 0.8125,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.64,
231
+ "learning_rate": 1.5971585917027864e-05,
232
+ "loss": 0.8555,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.66,
237
+ "learning_rate": 1.573576436351046e-05,
238
+ "loss": 0.8789,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.68,
243
+ "learning_rate": 1.5495089780708062e-05,
244
+ "loss": 0.8438,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.7,
249
+ "learning_rate": 1.5249765803345602e-05,
250
+ "loss": 0.8945,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.71,
255
+ "learning_rate": 1.5000000000000002e-05,
256
+ "loss": 0.7773,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.73,
261
+ "learning_rate": 1.4746003697476406e-05,
262
+ "loss": 0.7305,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.75,
267
+ "learning_rate": 1.4487991802004625e-05,
268
+ "loss": 0.6641,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.77,
273
+ "learning_rate": 1.4226182617406996e-05,
274
+ "loss": 0.5664,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.78,
279
+ "learning_rate": 1.396079766039157e-05,
280
+ "loss": 0.7148,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.8,
285
+ "learning_rate": 1.3692061473126845e-05,
286
+ "loss": 0.7969,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.82,
291
+ "learning_rate": 1.342020143325669e-05,
292
+ "loss": 0.8008,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.84,
297
+ "learning_rate": 1.3145447561516138e-05,
298
+ "loss": 0.5234,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.86,
303
+ "learning_rate": 1.2868032327110904e-05,
304
+ "loss": 0.8125,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.87,
309
+ "learning_rate": 1.2588190451025209e-05,
310
+ "loss": 0.8867,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.89,
315
+ "learning_rate": 1.2306158707424402e-05,
316
+ "loss": 0.6641,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.89,
321
+ "eval_loss": 0.6922495365142822,
322
+ "eval_runtime": 2680.3182,
323
+ "eval_samples_per_second": 0.168,
324
+ "eval_steps_per_second": 0.084,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.91,
329
+ "learning_rate": 1.2022175723320382e-05,
330
+ "loss": 0.832,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.93,
335
+ "learning_rate": 1.1736481776669307e-05,
336
+ "loss": 0.6562,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.95,
341
+ "learning_rate": 1.1449318593072468e-05,
342
+ "loss": 0.5469,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.96,
347
+ "learning_rate": 1.1160929141252303e-05,
348
+ "loss": 0.4609,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.98,
353
+ "learning_rate": 1.0871557427476585e-05,
354
+ "loss": 0.6719,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 1.0,
359
+ "learning_rate": 1.0581448289104759e-05,
360
+ "loss": 0.9102,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 1.02,
365
+ "learning_rate": 1.0290847187431115e-05,
366
+ "loss": 0.4551,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 1.03,
371
+ "learning_rate": 1e-05,
372
+ "loss": 0.5195,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 1.05,
377
+ "learning_rate": 9.709152812568886e-06,
378
+ "loss": 0.6875,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 1.07,
383
+ "learning_rate": 9.418551710895243e-06,
384
+ "loss": 0.7383,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 1.09,
389
+ "learning_rate": 9.128442572523418e-06,
390
+ "loss": 0.4355,
391
+ "step": 61
392
+ },
393
+ {
394
+ "epoch": 1.11,
395
+ "learning_rate": 8.839070858747697e-06,
396
+ "loss": 0.5703,
397
+ "step": 62
398
+ },
399
+ {
400
+ "epoch": 1.12,
401
+ "learning_rate": 8.550681406927534e-06,
402
+ "loss": 0.5781,
403
+ "step": 63
404
+ },
405
+ {
406
+ "epoch": 1.14,
407
+ "learning_rate": 8.263518223330698e-06,
408
+ "loss": 0.4902,
409
+ "step": 64
410
+ },
411
+ {
412
+ "epoch": 1.16,
413
+ "learning_rate": 7.977824276679623e-06,
414
+ "loss": 0.6602,
415
+ "step": 65
416
+ },
417
+ {
418
+ "epoch": 1.18,
419
+ "learning_rate": 7.6938412925756e-06,
420
+ "loss": 0.5742,
421
+ "step": 66
422
+ },
423
+ {
424
+ "epoch": 1.2,
425
+ "learning_rate": 7.411809548974792e-06,
426
+ "loss": 0.6562,
427
+ "step": 67
428
+ },
429
+ {
430
+ "epoch": 1.21,
431
+ "learning_rate": 7.131967672889101e-06,
432
+ "loss": 0.5039,
433
+ "step": 68
434
+ },
435
+ {
436
+ "epoch": 1.23,
437
+ "learning_rate": 6.854552438483866e-06,
438
+ "loss": 0.875,
439
+ "step": 69
440
+ },
441
+ {
442
+ "epoch": 1.25,
443
+ "learning_rate": 6.579798566743314e-06,
444
+ "loss": 0.6445,
445
+ "step": 70
446
+ },
447
+ {
448
+ "epoch": 1.27,
449
+ "learning_rate": 6.3079385268731575e-06,
450
+ "loss": 0.6055,
451
+ "step": 71
452
+ },
453
+ {
454
+ "epoch": 1.28,
455
+ "learning_rate": 6.039202339608432e-06,
456
+ "loss": 0.9336,
457
+ "step": 72
458
+ },
459
+ {
460
+ "epoch": 1.3,
461
+ "learning_rate": 5.773817382593008e-06,
462
+ "loss": 0.5469,
463
+ "step": 73
464
+ },
465
+ {
466
+ "epoch": 1.32,
467
+ "learning_rate": 5.512008197995379e-06,
468
+ "loss": 0.543,
469
+ "step": 74
470
+ },
471
+ {
472
+ "epoch": 1.34,
473
+ "learning_rate": 5.253996302523596e-06,
474
+ "loss": 0.498,
475
+ "step": 75
476
+ },
477
+ {
478
+ "epoch": 1.34,
479
+ "eval_loss": 0.6778966188430786,
480
+ "eval_runtime": 2674.086,
481
+ "eval_samples_per_second": 0.169,
482
+ "eval_steps_per_second": 0.085,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 1.36,
487
+ "learning_rate": 5.000000000000003e-06,
488
+ "loss": 0.6641,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 1.37,
493
+ "learning_rate": 4.7502341966544e-06,
494
+ "loss": 0.6797,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 1.39,
499
+ "learning_rate": 4.504910219291941e-06,
500
+ "loss": 0.4668,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 1.41,
505
+ "learning_rate": 4.264235636489542e-06,
506
+ "loss": 0.6055,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 1.43,
511
+ "learning_rate": 4.028414082972141e-06,
512
+ "loss": 0.8516,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 1.44,
517
+ "learning_rate": 3.797645087317401e-06,
518
+ "loss": 0.5664,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 1.46,
523
+ "learning_rate": 3.5721239031346067e-06,
524
+ "loss": 0.4219,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 1.48,
529
+ "learning_rate": 3.3520413438606215e-06,
530
+ "loss": 0.6641,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 1.5,
535
+ "learning_rate": 3.1375836213126653e-06,
536
+ "loss": 0.291,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 1.52,
541
+ "learning_rate": 2.9289321881345257e-06,
542
+ "loss": 0.4648,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 1.53,
547
+ "learning_rate": 2.726263584269513e-06,
548
+ "loss": 0.4922,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 1.55,
553
+ "learning_rate": 2.529749287590042e-06,
554
+ "loss": 0.6953,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 1.57,
559
+ "learning_rate": 2.339555568810221e-06,
560
+ "loss": 0.5039,
561
+ "step": 88
562
+ },
563
+ {
564
+ "epoch": 1.59,
565
+ "learning_rate": 2.155843350804243e-06,
566
+ "loss": 0.7305,
567
+ "step": 89
568
+ },
569
+ {
570
+ "epoch": 1.61,
571
+ "learning_rate": 1.9787680724495617e-06,
572
+ "loss": 0.4824,
573
+ "step": 90
574
+ },
575
+ {
576
+ "epoch": 1.62,
577
+ "learning_rate": 1.808479557110081e-06,
578
+ "loss": 0.4863,
579
+ "step": 91
580
+ },
581
+ {
582
+ "epoch": 1.64,
583
+ "learning_rate": 1.6451218858706374e-06,
584
+ "loss": 0.4883,
585
+ "step": 92
586
+ },
587
+ {
588
+ "epoch": 1.66,
589
+ "learning_rate": 1.4888332756300027e-06,
590
+ "loss": 0.8008,
591
+ "step": 93
592
+ },
593
+ {
594
+ "epoch": 1.68,
595
+ "learning_rate": 1.339745962155613e-06,
596
+ "loss": 0.5234,
597
+ "step": 94
598
+ },
599
+ {
600
+ "epoch": 1.69,
601
+ "learning_rate": 1.1979860881988903e-06,
602
+ "loss": 0.5703,
603
+ "step": 95
604
+ },
605
+ {
606
+ "epoch": 1.71,
607
+ "learning_rate": 1.0636735967658785e-06,
608
+ "loss": 0.4668,
609
+ "step": 96
610
+ },
611
+ {
612
+ "epoch": 1.73,
613
+ "learning_rate": 9.369221296335007e-07,
614
+ "loss": 0.5039,
615
+ "step": 97
616
+ },
617
+ {
618
+ "epoch": 1.75,
619
+ "learning_rate": 8.178389311972612e-07,
620
+ "loss": 0.9141,
621
+ "step": 98
622
+ },
623
+ {
624
+ "epoch": 1.77,
625
+ "learning_rate": 7.065247577317747e-07,
626
+ "loss": 0.5391,
627
+ "step": 99
628
+ },
629
+ {
630
+ "epoch": 1.78,
631
+ "learning_rate": 6.030737921409169e-07,
632
+ "loss": 0.5586,
633
+ "step": 100
634
+ },
635
+ {
636
+ "epoch": 1.78,
637
+ "eval_loss": 0.6763745546340942,
638
+ "eval_runtime": 2672.3202,
639
+ "eval_samples_per_second": 0.169,
640
+ "eval_steps_per_second": 0.085,
641
+ "step": 100
642
+ }
643
+ ],
644
+ "logging_steps": 1,
645
+ "max_steps": 112,
646
+ "num_input_tokens_seen": 0,
647
+ "num_train_epochs": 2,
648
+ "save_steps": 25,
649
+ "total_flos": 6378259418184192.0,
650
+ "train_batch_size": 2,
651
+ "trial_name": null,
652
+ "trial_params": null
653
+ }
checkpoints/vqaradROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fb82d6ebe25102ea403df58aad611381e5b65a316fb950f364448549d2d8a4b
3
+ size 4792