--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-ner-essays-classify_span results: [] --- # bert-ner-essays-classify_span This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6951 - Claim: {'precision': 0.4811320754716981, 'recall': 0.3541666666666667, 'f1-score': 0.408, 'support': 144.0} - Majorclaim: {'precision': 0.625, 'recall': 0.4861111111111111, 'f1-score': 0.5468749999999999, 'support': 72.0} - Premise: {'precision': 0.7718120805369127, 'recall': 0.8778625954198473, 'f1-score': 0.8214285714285714, 'support': 393.0} - Accuracy: 0.7077 - Macro avg: {'precision': 0.6259813853362036, 'recall': 0.5727134577325418, 'f1-score': 0.5921011904761905, 'support': 609.0} - Weighted avg: {'precision': 0.6857227693250102, 'recall': 0.7077175697865353, 'f1-score': 0.6912125263898662, 'support': 609.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 267 | 0.7245 | {'precision': 0.35714285714285715, 'recall': 0.10416666666666667, 'f1-score': 0.16129032258064516, 'support': 144.0} | {'precision': 0.5806451612903226, 'recall': 0.25, 'f1-score': 0.34951456310679613, 'support': 72.0} | {'precision': 0.6940298507462687, 'recall': 0.9465648854961832, 'f1-score': 0.8008611410118407, 'support': 393.0} | 0.6650 | {'precision': 0.5439392897264828, 'recall': 0.4335771840542833, 'f1-score': 0.4372220088997607, 'support': 609.0} | {'precision': 0.6009667559684043, 'recall': 0.6650246305418719, 'f1-score': 0.5962714013349024, 'support': 609.0} | | 0.7275 | 2.0 | 534 | 0.6951 | {'precision': 0.4811320754716981, 'recall': 0.3541666666666667, 'f1-score': 0.408, 'support': 144.0} | {'precision': 0.625, 'recall': 0.4861111111111111, 'f1-score': 0.5468749999999999, 'support': 72.0} | {'precision': 0.7718120805369127, 'recall': 0.8778625954198473, 'f1-score': 0.8214285714285714, 'support': 393.0} | 0.7077 | {'precision': 0.6259813853362036, 'recall': 0.5727134577325418, 'f1-score': 0.5921011904761905, 'support': 609.0} | {'precision': 0.6857227693250102, 'recall': 0.7077175697865353, 'f1-score': 0.6912125263898662, 'support': 609.0} | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3