Theoreticallyhugo commited on
Commit
5bf5666
·
verified ·
1 Parent(s): 8979594

trainer: training complete at 2024-02-19 16:43:22.868013.

Browse files
Files changed (1) hide show
  1. README.md +36 -5
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - essays_su_g
 
 
8
  model-index:
9
  - name: longformer-full_labels
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +31,18 @@ should probably proofread and complete it, then remove this comment. -->
16
  # longformer-full_labels
17
 
18
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
@@ -40,13 +67,17 @@ The following hyperparameters were used during training:
40
  - seed: 42
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
- - num_epochs: 1
44
 
45
  ### Training results
46
 
47
- | Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
48
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------:|:--------------------------------------------------------------------:|:--------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|
49
- | No log | 1.0 | 41 | 0.9425 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 641.0} | {'precision': 0.25806451612903225, 'recall': 0.001961265015935278, 'f1-score': 0.0038929440389294393, 'support': 4079.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2041.0} | {'precision': 0.6311264475377237, 'recall': 0.9420340462680052, 'f1-score': 0.7558575281056281, 'support': 11455.0} | {'precision': 0.7414656771799629, 'recall': 0.8617789757412398, 'f1-score': 0.7971079531288956, 'support': 9275.0} | 0.6733 | {'precision': 0.23295094869238842, 'recall': 0.2579677552893115, 'f1-score': 0.22240834646763616, 'support': 27909.0} | {'precision': 0.5431686113325129, 'recall': 0.6733311834891971, 'f1-score': 0.575706889120186, 'support': 27909.0} |
 
 
 
 
50
 
51
 
52
  ### Framework versions
 
5
  - generated_from_trainer
6
  datasets:
7
  - essays_su_g
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: longformer-full_labels
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: full_labels
20
+ split: test
21
+ args: full_labels
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8206313375613601
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
  # longformer-full_labels
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4551
36
+ - B-claim: {'precision': 0.4418604651162791, 'recall': 0.34296028880866425, 'f1-score': 0.3861788617886179, 'support': 277.0}
37
+ - B-majorclaim: {'precision': 0.6578947368421053, 'recall': 0.3546099290780142, 'f1-score': 0.4608294930875576, 'support': 141.0}
38
+ - B-premise: {'precision': 0.6765463917525774, 'recall': 0.8190327613104524, 'f1-score': 0.7410021171489062, 'support': 641.0}
39
+ - I-claim: {'precision': 0.5945861854387057, 'recall': 0.4684971806815396, 'f1-score': 0.5240641711229947, 'support': 4079.0}
40
+ - I-majorclaim: {'precision': 0.7040552200172563, 'recall': 0.7996080352768251, 'f1-score': 0.7487955953200275, 'support': 2041.0}
41
+ - I-premise: {'precision': 0.8394741113455608, 'recall': 0.9030117852466172, 'f1-score': 0.8700845354754594, 'support': 11455.0}
42
+ - O: {'precision': 0.9285714285714286, 'recall': 0.8998382749326146, 'f1-score': 0.9139790833926519, 'support': 9275.0}
43
+ - Accuracy: 0.8206
44
+ - Macro avg: {'precision': 0.6918555055834161, 'recall': 0.6553654650478181, 'f1-score': 0.6635619796194593, 'support': 27909.0}
45
+ - Weighted avg: {'precision': 0.8147835624267602, 'recall': 0.8206313375613601, 'f1-score': 0.8153948467064512, 'support': 27909.0}
46
 
47
  ## Model description
48
 
 
67
  - seed: 42
68
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
  - lr_scheduler_type: linear
70
+ - num_epochs: 5
71
 
72
  ### Training results
73
 
74
+ | Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
75
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
76
+ | No log | 1.0 | 41 | 0.7805 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.8450704225352113, 'recall': 0.093603744149766, 'f1-score': 0.16853932584269662, 'support': 641.0} | {'precision': 0.4851063829787234, 'recall': 0.11179210590831086, 'f1-score': 0.1817095038852361, 'support': 4079.0} | {'precision': 0.5744125326370757, 'recall': 0.10779029887310142, 'f1-score': 0.1815181518151815, 'support': 2041.0} | {'precision': 0.7666466706658668, 'recall': 0.8925360104757748, 'f1-score': 0.824815457222379, 'support': 11455.0} | {'precision': 0.6639350481827149, 'recall': 0.9433962264150944, 'f1-score': 0.7793711588135744, 'support': 9275.0} | 0.7062 | {'precision': 0.47645300814279895, 'recall': 0.30701691226029254, 'f1-score': 0.3051362282255811, 'support': 27909.0} | {'precision': 0.667625147461383, 'recall': 0.7062237987745889, 'f1-score': 0.6412495568650286, 'support': 27909.0} |
77
+ | No log | 2.0 | 82 | 0.5661 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.5732708089097304, 'recall': 0.7628705148205929, 'f1-score': 0.6546184738955824, 'support': 641.0} | {'precision': 0.5007429420505201, 'recall': 0.413091443981368, 'f1-score': 0.45271359484148305, 'support': 4079.0} | {'precision': 0.6697574893009985, 'recall': 0.4600685938265556, 'f1-score': 0.5454545454545454, 'support': 2041.0} | {'precision': 0.7978142076502732, 'recall': 0.9304233958969882, 'f1-score': 0.8590311920689933, 'support': 11455.0} | {'precision': 0.8996640537513998, 'recall': 0.8661994609164421, 'f1-score': 0.8826146663004669, 'support': 9275.0} | 0.7813 | {'precision': 0.4916070716661317, 'recall': 0.49037905849170677, 'f1-score': 0.48491892465158154, 'support': 27909.0} | {'precision': 0.7617728306989379, 'recall': 0.781289189867068, 'f1-score': 0.7669911232034595, 'support': 27909.0} |
78
+ | No log | 3.0 | 123 | 0.5008 | {'precision': 0.319672131147541, 'recall': 0.1407942238267148, 'f1-score': 0.1954887218045113, 'support': 277.0} | {'precision': 1.0, 'recall': 0.014184397163120567, 'f1-score': 0.027972027972027972, 'support': 141.0} | {'precision': 0.6006674082313682, 'recall': 0.8424336973478939, 'f1-score': 0.7012987012987012, 'support': 641.0} | {'precision': 0.5759794946905895, 'recall': 0.3856337337582741, 'f1-score': 0.46196769456681347, 'support': 4079.0} | {'precision': 0.7786308381317978, 'recall': 0.5962763351298384, 'f1-score': 0.6753607103218646, 'support': 2041.0} | {'precision': 0.8115562403697997, 'recall': 0.9195984286337844, 'f1-score': 0.8622058522611008, 'support': 11455.0} | {'precision': 0.8836870578443612, 'recall': 0.9157951482479785, 'f1-score': 0.8994546513474877, 'support': 9275.0} | 0.8026 | {'precision': 0.7100275957736368, 'recall': 0.5449594234439435, 'f1-score': 0.5462497656532153, 'support': 27909.0} | {'precision': 0.7899156932679995, 'recall': 0.8025726468164391, 'f1-score': 0.7878968886101326, 'support': 27909.0} |
79
+ | No log | 4.0 | 164 | 0.4686 | {'precision': 0.41739130434782606, 'recall': 0.34657039711191334, 'f1-score': 0.378698224852071, 'support': 277.0} | {'precision': 0.6346153846153846, 'recall': 0.23404255319148937, 'f1-score': 0.34196891191709844, 'support': 141.0} | {'precision': 0.6666666666666666, 'recall': 0.8112324492979719, 'f1-score': 0.7318789584799437, 'support': 641.0} | {'precision': 0.5885747259088286, 'recall': 0.500122579063496, 'f1-score': 0.5407554671968192, 'support': 4079.0} | {'precision': 0.6578228638314475, 'recall': 0.8260656540911318, 'f1-score': 0.7324066029539531, 'support': 2041.0} | {'precision': 0.8442690346982404, 'recall': 0.8963771278917503, 'f1-score': 0.8695431257145276, 'support': 11455.0} | {'precision': 0.9407347504621072, 'recall': 0.8779514824797844, 'f1-score': 0.9082594389604595, 'support': 9275.0} | 0.8164 | {'precision': 0.6785821043615002, 'recall': 0.6417660347325053, 'f1-score': 0.6433586757249817, 'support': 27909.0} | {'precision': 0.8159468583229401, 'recall': 0.816439141495575, 'f1-score': 0.8136284949655307, 'support': 27909.0} |
80
+ | No log | 5.0 | 205 | 0.4551 | {'precision': 0.4418604651162791, 'recall': 0.34296028880866425, 'f1-score': 0.3861788617886179, 'support': 277.0} | {'precision': 0.6578947368421053, 'recall': 0.3546099290780142, 'f1-score': 0.4608294930875576, 'support': 141.0} | {'precision': 0.6765463917525774, 'recall': 0.8190327613104524, 'f1-score': 0.7410021171489062, 'support': 641.0} | {'precision': 0.5945861854387057, 'recall': 0.4684971806815396, 'f1-score': 0.5240641711229947, 'support': 4079.0} | {'precision': 0.7040552200172563, 'recall': 0.7996080352768251, 'f1-score': 0.7487955953200275, 'support': 2041.0} | {'precision': 0.8394741113455608, 'recall': 0.9030117852466172, 'f1-score': 0.8700845354754594, 'support': 11455.0} | {'precision': 0.9285714285714286, 'recall': 0.8998382749326146, 'f1-score': 0.9139790833926519, 'support': 9275.0} | 0.8206 | {'precision': 0.6918555055834161, 'recall': 0.6553654650478181, 'f1-score': 0.6635619796194593, 'support': 27909.0} | {'precision': 0.8147835624267602, 'recall': 0.8206313375613601, 'f1-score': 0.8153948467064512, 'support': 27909.0} |
81
 
82
 
83
  ### Framework versions