trainer: training complete at 2024-10-26 20:46:35.297562.
Browse files- README.md +29 -43
- meta_data/README_s42_e5.md +30 -28
- meta_data/meta_s42_e5_cvi0.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: allenai/longformer-base-4096
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
@@ -14,15 +15,15 @@ model-index:
|
|
14 |
name: Token Classification
|
15 |
type: token-classification
|
16 |
dataset:
|
17 |
-
name:
|
18 |
-
type:
|
19 |
config: full_labels
|
20 |
split: train[0%:20%]
|
21 |
args: full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,19 +31,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
# longformer-full_labels
|
32 |
|
33 |
-
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -67,37 +68,22 @@ The following hyperparameters were used during training:
|
|
67 |
- seed: 42
|
68 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
69 |
- lr_scheduler_type: linear
|
70 |
-
- num_epochs:
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 |
|
77 |
-
| No log | 2.0 |
|
78 |
-
| No log | 3.0 |
|
79 |
-
| No log | 4.0 |
|
80 |
-
| No log | 5.0 |
|
81 |
-
| No log | 6.0 | 486 | 0.5503 | {'precision': 0.5160349854227405, 'recall': 0.6232394366197183, 'f1-score': 0.5645933014354066, 'support': 284.0} | {'precision': 0.6923076923076923, 'recall': 0.7659574468085106, 'f1-score': 0.7272727272727273, 'support': 141.0} | {'precision': 0.7780859916782247, 'recall': 0.7923728813559322, 'f1-score': 0.7851644506648006, 'support': 708.0} | {'precision': 0.5575316048853654, 'recall': 0.6382143733137111, 'f1-score': 0.5951509606587375, 'support': 4077.0} | {'precision': 0.7698019801980198, 'recall': 0.7682806324110671, 'f1-score': 0.7690405539070228, 'support': 2024.0} | {'precision': 0.8899397388684298, 'recall': 0.8692773054283846, 'f1-score': 0.8794871794871795, 'support': 12232.0} | {'precision': 0.9260470513767275, 'recall': 0.8895419537900284, 'f1-score': 0.907427508140797, 'support': 9868.0} | 0.8323 | {'precision': 0.7328212921053143, 'recall': 0.763840575675336, 'f1-score': 0.7468766687952387, 'support': 29334.0} | {'precision': 0.8403274341189826, 'recall': 0.8322765391695643, 'f1-score': 0.835690214793681, 'support': 29334.0} |
|
82 |
-
| 0.4181 | 7.0 | 567 | 0.6419 | {'precision': 0.5571428571428572, 'recall': 0.5492957746478874, 'f1-score': 0.5531914893617021, 'support': 284.0} | {'precision': 0.7152777777777778, 'recall': 0.7304964539007093, 'f1-score': 0.7228070175438596, 'support': 141.0} | {'precision': 0.7544529262086515, 'recall': 0.8375706214689266, 'f1-score': 0.7938420348058902, 'support': 708.0} | {'precision': 0.6019025655808591, 'recall': 0.5121412803532008, 'f1-score': 0.5534057778955738, 'support': 4077.0} | {'precision': 0.8124655267512411, 'recall': 0.7277667984189723, 'f1-score': 0.7677873338545738, 'support': 2024.0} | {'precision': 0.855129565085619, 'recall': 0.9226618705035972, 'f1-score': 0.8876130554463233, 'support': 12232.0} | {'precision': 0.9203649937785151, 'recall': 0.8994730441832185, 'f1-score': 0.9097990979909799, 'support': 9868.0} | 0.8378 | {'precision': 0.7452480303322171, 'recall': 0.7399151204966445, 'f1-score': 0.7412065438427005, 'support': 29334.0} | {'precision': 0.8329491032454597, 'recall': 0.8377650507943001, 'f1-score': 0.8340655773672634, 'support': 29334.0} |
|
83 |
-
| 0.4181 | 8.0 | 648 | 0.6668 | {'precision': 0.5745454545454546, 'recall': 0.5563380281690141, 'f1-score': 0.5652951699463328, 'support': 284.0} | {'precision': 0.7027027027027027, 'recall': 0.7375886524822695, 'f1-score': 0.7197231833910034, 'support': 141.0} | {'precision': 0.7538071065989848, 'recall': 0.8389830508474576, 'f1-score': 0.7941176470588234, 'support': 708.0} | {'precision': 0.6235260281852172, 'recall': 0.5317635516311013, 'f1-score': 0.5740005295207837, 'support': 4077.0} | {'precision': 0.8115154807170016, 'recall': 0.7381422924901185, 'f1-score': 0.773091849935317, 'support': 2024.0} | {'precision': 0.8614178024822965, 'recall': 0.9248691955526488, 'f1-score': 0.8920165582495565, 'support': 12232.0} | {'precision': 0.9189412737799835, 'recall': 0.9006890960680989, 'f1-score': 0.9097236438075741, 'support': 9868.0} | 0.8427 | {'precision': 0.7494936927159488, 'recall': 0.7469105524629585, 'f1-score': 0.7468526545584844, 'support': 29334.0} | {'precision': 0.8381245456177384, 'recall': 0.8426740301356788, 'f1-score': 0.8392138000943469, 'support': 29334.0} |
|
84 |
-
| 0.4181 | 9.0 | 729 | 0.7192 | {'precision': 0.5454545454545454, 'recall': 0.6338028169014085, 'f1-score': 0.5863192182410424, 'support': 284.0} | {'precision': 0.6928104575163399, 'recall': 0.75177304964539, 'f1-score': 0.7210884353741497, 'support': 141.0} | {'precision': 0.7757404795486601, 'recall': 0.7768361581920904, 'f1-score': 0.7762879322512349, 'support': 708.0} | {'precision': 0.5975181456333412, 'recall': 0.6259504537650233, 'f1-score': 0.6114039290848108, 'support': 4077.0} | {'precision': 0.7642474427666829, 'recall': 0.775197628458498, 'f1-score': 0.7696835908756438, 'support': 2024.0} | {'precision': 0.893157763146929, 'recall': 0.8761445389143231, 'f1-score': 0.8845693533077462, 'support': 12232.0} | {'precision': 0.9098686220592729, 'recall': 0.9053506282934739, 'f1-score': 0.9076040026413369, 'support': 9868.0} | 0.8389 | {'precision': 0.7398282080179673, 'recall': 0.7635793248814581, 'f1-score': 0.7509937802537092, 'support': 29334.0} | {'precision': 0.8416318009865815, 'recall': 0.8388900252266994, 'f1-score': 0.8401384747371046, 'support': 29334.0} |
|
85 |
-
| 0.4181 | 10.0 | 810 | 0.8728 | {'precision': 0.5584905660377358, 'recall': 0.5211267605633803, 'f1-score': 0.5391621129326047, 'support': 284.0} | {'precision': 0.6948051948051948, 'recall': 0.7588652482269503, 'f1-score': 0.7254237288135594, 'support': 141.0} | {'precision': 0.7503201024327785, 'recall': 0.827683615819209, 'f1-score': 0.7871054398925452, 'support': 708.0} | {'precision': 0.5859070464767616, 'recall': 0.4792739759627177, 'f1-score': 0.5272531030760929, 'support': 4077.0} | {'precision': 0.7485322896281801, 'recall': 0.7559288537549407, 'f1-score': 0.7522123893805309, 'support': 2024.0} | {'precision': 0.8385786052009456, 'recall': 0.92797580117724, 'f1-score': 0.8810152126668737, 'support': 12232.0} | {'precision': 0.9320967566981234, 'recall': 0.8707944872314552, 'f1-score': 0.9004034159375491, 'support': 9868.0} | 0.8273 | {'precision': 0.7298186516113886, 'recall': 0.7345212489622704, 'f1-score': 0.7303679146713938, 'support': 29334.0} | {'precision': 0.8231745470223255, 'recall': 0.8273334696938706, 'f1-score': 0.8231582874630071, 'support': 29334.0} |
|
86 |
-
| 0.4181 | 11.0 | 891 | 0.7904 | {'precision': 0.5487804878048781, 'recall': 0.6338028169014085, 'f1-score': 0.5882352941176471, 'support': 284.0} | {'precision': 0.6956521739130435, 'recall': 0.7943262411347518, 'f1-score': 0.7417218543046358, 'support': 141.0} | {'precision': 0.7777777777777778, 'recall': 0.7810734463276836, 'f1-score': 0.7794221282593374, 'support': 708.0} | {'precision': 0.600095785440613, 'recall': 0.6146676477802305, 'f1-score': 0.6072943172179812, 'support': 4077.0} | {'precision': 0.7808219178082192, 'recall': 0.7885375494071146, 'f1-score': 0.7846607669616519, 'support': 2024.0} | {'precision': 0.8951898734177215, 'recall': 0.8672334859385219, 'f1-score': 0.8809899510007474, 'support': 12232.0} | {'precision': 0.8980524642289348, 'recall': 0.9158897446291042, 'f1-score': 0.9068834035721453, 'support': 9868.0} | 0.8384 | {'precision': 0.742338640055884, 'recall': 0.7707901331598307, 'f1-score': 0.755601102204878, 'support': 29334.0} | {'precision': 0.8401010980182351, 'recall': 0.8383786732119725, 'f1-score': 0.8390590885154817, 'support': 29334.0} |
|
87 |
-
| 0.4181 | 12.0 | 972 | 0.9021 | {'precision': 0.5766423357664233, 'recall': 0.5563380281690141, 'f1-score': 0.5663082437275986, 'support': 284.0} | {'precision': 0.7272727272727273, 'recall': 0.7375886524822695, 'f1-score': 0.7323943661971831, 'support': 141.0} | {'precision': 0.7567221510883483, 'recall': 0.8347457627118644, 'f1-score': 0.793821356615178, 'support': 708.0} | {'precision': 0.6302699423718532, 'recall': 0.5096884964434634, 'f1-score': 0.5636018443178736, 'support': 4077.0} | {'precision': 0.7813152400835073, 'recall': 0.7396245059288538, 'f1-score': 0.7598984771573604, 'support': 2024.0} | {'precision': 0.8537686174213931, 'recall': 0.9278940483976456, 'f1-score': 0.889289352033221, 'support': 12232.0} | {'precision': 0.9143213210094506, 'recall': 0.892176732873936, 'f1-score': 0.9031132994819715, 'support': 9868.0} | 0.8380 | {'precision': 0.7486160478591003, 'recall': 0.7425794610010066, 'f1-score': 0.7440609913614838, 'support': 29334.0} | {'precision': 0.8324430451309904, 'recall': 0.838003681734506, 'f1-score': 0.8335608269497821, 'support': 29334.0} |
|
88 |
-
| 0.0774 | 13.0 | 1053 | 0.9174 | {'precision': 0.5379939209726444, 'recall': 0.6232394366197183, 'f1-score': 0.5774877650897227, 'support': 284.0} | {'precision': 0.7013888888888888, 'recall': 0.7163120567375887, 'f1-score': 0.7087719298245613, 'support': 141.0} | {'precision': 0.7626666666666667, 'recall': 0.807909604519774, 'f1-score': 0.784636488340192, 'support': 708.0} | {'precision': 0.5750291715285881, 'recall': 0.6043659553593328, 'f1-score': 0.5893326955273857, 'support': 4077.0} | {'precision': 0.7868589743589743, 'recall': 0.7277667984189723, 'f1-score': 0.7561601642710472, 'support': 2024.0} | {'precision': 0.8721798538290435, 'recall': 0.8975637671680837, 'f1-score': 0.8846897663174859, 'support': 12232.0} | {'precision': 0.9202434336963485, 'recall': 0.8734292663153628, 'f1-score': 0.8962254341270668, 'support': 9868.0} | 0.8313 | {'precision': 0.7366229871344505, 'recall': 0.7500838407341189, 'f1-score': 0.7424720347853516, 'support': 29334.0} | {'precision': 0.8344622887797986, 'recall': 0.8312879252744256, 'f1-score': 0.8324170375280131, 'support': 29334.0} |
|
89 |
-
| 0.0774 | 14.0 | 1134 | 0.9774 | {'precision': 0.5398773006134969, 'recall': 0.6197183098591549, 'f1-score': 0.5770491803278688, 'support': 284.0} | {'precision': 0.6871165644171779, 'recall': 0.7943262411347518, 'f1-score': 0.736842105263158, 'support': 141.0} | {'precision': 0.7735334242837654, 'recall': 0.8008474576271186, 'f1-score': 0.7869535045107564, 'support': 708.0} | {'precision': 0.5810174281676872, 'recall': 0.6051017905322541, 'f1-score': 0.5928150907124834, 'support': 4077.0} | {'precision': 0.7494387067804221, 'recall': 0.8246047430830039, 'f1-score': 0.7852270054104916, 'support': 2024.0} | {'precision': 0.8794297680412371, 'recall': 0.8926586003924133, 'f1-score': 0.8859948068808828, 'support': 12232.0} | {'precision': 0.9270302504608046, 'recall': 0.8664369679773004, 'f1-score': 0.8957100204284741, 'support': 9868.0} | 0.8338 | {'precision': 0.733920491823513, 'recall': 0.7719563015151424, 'f1-score': 0.751513101933445, 'support': 29334.0} | {'precision': 0.8382307794620859, 'recall': 0.8338446853480602, 'f1-score': 0.835464012013009, 'support': 29334.0} |
|
90 |
-
| 0.0774 | 15.0 | 1215 | 0.9720 | {'precision': 0.5487804878048781, 'recall': 0.6338028169014085, 'f1-score': 0.5882352941176471, 'support': 284.0} | {'precision': 0.7445255474452555, 'recall': 0.723404255319149, 'f1-score': 0.7338129496402878, 'support': 141.0} | {'precision': 0.7593582887700535, 'recall': 0.8022598870056498, 'f1-score': 0.7802197802197803, 'support': 708.0} | {'precision': 0.570828729281768, 'recall': 0.6335540838852097, 'f1-score': 0.6005580097651709, 'support': 4077.0} | {'precision': 0.7954422137818774, 'recall': 0.724308300395257, 'f1-score': 0.7582104990949057, 'support': 2024.0} | {'precision': 0.8803978651140223, 'recall': 0.8900425114453892, 'f1-score': 0.885193918204732, 'support': 12232.0} | {'precision': 0.9188239054010866, 'recall': 0.874037292257803, 'f1-score': 0.8958712022851208, 'support': 9868.0} | 0.8322 | {'precision': 0.7454510053712774, 'recall': 0.7544870210299808, 'f1-score': 0.748871664761092, 'support': 29334.0} | {'precision': 0.8376519459918353, 'recall': 0.8321742687666189, 'f1-score': 0.8343275428320325, 'support': 29334.0} |
|
91 |
-
| 0.0774 | 16.0 | 1296 | 1.0037 | {'precision': 0.5662251655629139, 'recall': 0.602112676056338, 'f1-score': 0.5836177474402731, 'support': 284.0} | {'precision': 0.7094594594594594, 'recall': 0.7446808510638298, 'f1-score': 0.726643598615917, 'support': 141.0} | {'precision': 0.766042780748663, 'recall': 0.809322033898305, 'f1-score': 0.7870879120879121, 'support': 708.0} | {'precision': 0.5981858298602599, 'recall': 0.5984792739759627, 'f1-score': 0.5983325159391859, 'support': 4077.0} | {'precision': 0.7981220657276995, 'recall': 0.7559288537549407, 'f1-score': 0.7764526769855367, 'support': 2024.0} | {'precision': 0.8736565560066873, 'recall': 0.8971550032701112, 'f1-score': 0.885249868914613, 'support': 12232.0} | {'precision': 0.9181542958555173, 'recall': 0.8912646939602756, 'f1-score': 0.9045096930117758, 'support': 9868.0} | 0.8382 | {'precision': 0.7471208790316002, 'recall': 0.7569919122828231, 'f1-score': 0.751699144713602, 'support': 29334.0} | {'precision': 0.8387644471781172, 'recall': 0.8382082225403968, 'f1-score': 0.838292846606077, 'support': 29334.0} |
|
92 |
-
| 0.0774 | 17.0 | 1377 | 1.0845 | {'precision': 0.5382165605095541, 'recall': 0.5950704225352113, 'f1-score': 0.5652173913043479, 'support': 284.0} | {'precision': 0.7163120567375887, 'recall': 0.7163120567375887, 'f1-score': 0.7163120567375887, 'support': 141.0} | {'precision': 0.7509627727856226, 'recall': 0.826271186440678, 'f1-score': 0.7868190988567586, 'support': 708.0} | {'precision': 0.5689655172413793, 'recall': 0.5827814569536424, 'f1-score': 0.5757906215921483, 'support': 4077.0} | {'precision': 0.7852169255490091, 'recall': 0.724308300395257, 'f1-score': 0.7535337959393473, 'support': 2024.0} | {'precision': 0.8561790861698866, 'recall': 0.9130150425114454, 'f1-score': 0.8836841272353221, 'support': 12232.0} | {'precision': 0.9375346721402419, 'recall': 0.8563032022699635, 'f1-score': 0.8950797097611355, 'support': 9868.0} | 0.8289 | {'precision': 0.7361982273047546, 'recall': 0.7448659525491124, 'f1-score': 0.7394909716323783, 'support': 29334.0} | {'precision': 0.8324422630439487, 'recall': 0.8289016158723665, 'f1-score': 0.829519030769714, 'support': 29334.0} |
|
93 |
-
| 0.0774 | 18.0 | 1458 | 1.0618 | {'precision': 0.5774647887323944, 'recall': 0.5774647887323944, 'f1-score': 0.5774647887323944, 'support': 284.0} | {'precision': 0.7571428571428571, 'recall': 0.75177304964539, 'f1-score': 0.7544483985765125, 'support': 141.0} | {'precision': 0.754863813229572, 'recall': 0.8220338983050848, 'f1-score': 0.7870182555780934, 'support': 708.0} | {'precision': 0.59768299104792, 'recall': 0.5567819475104243, 'f1-score': 0.5765079365079365, 'support': 4077.0} | {'precision': 0.7977588046958378, 'recall': 0.7386363636363636, 'f1-score': 0.767060030785018, 'support': 2024.0} | {'precision': 0.8586523736600307, 'recall': 0.9167756703727927, 'f1-score': 0.8867626126838526, 'support': 12232.0} | {'precision': 0.9229297331774211, 'recall': 0.879813538710985, 'f1-score': 0.9008560311284047, 'support': 9868.0} | 0.8357 | {'precision': 0.7523564802408619, 'recall': 0.7490398938447764, 'f1-score': 0.7500168648560301, 'support': 29334.0} | {'precision': 0.8340875618543231, 'recall': 0.8356514624667621, 'f1-score': 0.8340855697185618, 'support': 29334.0} |
|
94 |
-
| 0.0228 | 19.0 | 1539 | 1.0645 | {'precision': 0.5694444444444444, 'recall': 0.5774647887323944, 'f1-score': 0.5734265734265734, 'support': 284.0} | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1-score': 0.7420494699646644, 'support': 141.0} | {'precision': 0.7552083333333334, 'recall': 0.8192090395480226, 'f1-score': 0.7859078590785908, 'support': 708.0} | {'precision': 0.5936120488184887, 'recall': 0.5607064017660044, 'f1-score': 0.5766902119071644, 'support': 4077.0} | {'precision': 0.7824947589098532, 'recall': 0.7376482213438735, 'f1-score': 0.7594099694811801, 'support': 2024.0} | {'precision': 0.8594939629316312, 'recall': 0.9136690647482014, 'f1-score': 0.8857539132157718, 'support': 12232.0} | {'precision': 0.9252186899935994, 'recall': 0.8789014997973247, 'f1-score': 0.9014655441222326, 'support': 9868.0} | 0.8344 | {'precision': 0.7464155511642371, 'recall': 0.7474685524285215, 'f1-score': 0.7463862201708825, 'support': 29334.0} | {'precision': 0.8334350647066741, 'recall': 0.8344242176314175, 'f1-score': 0.8332419893084726, 'support': 29334.0} |
|
95 |
-
| 0.0228 | 20.0 | 1620 | 1.0525 | {'precision': 0.5714285714285714, 'recall': 0.5915492957746479, 'f1-score': 0.5813148788927336, 'support': 284.0} | {'precision': 0.7328767123287672, 'recall': 0.7588652482269503, 'f1-score': 0.7456445993031359, 'support': 141.0} | {'precision': 0.7592592592592593, 'recall': 0.8107344632768362, 'f1-score': 0.7841530054644807, 'support': 708.0} | {'precision': 0.5995872033023736, 'recall': 0.5700269806230072, 'f1-score': 0.5844335470891487, 'support': 4077.0} | {'precision': 0.7741293532338308, 'recall': 0.7687747035573123, 'f1-score': 0.7714427367377293, 'support': 2024.0} | {'precision': 0.8661675245671502, 'recall': 0.907946370176586, 'f1-score': 0.8865650195577552, 'support': 12232.0} | {'precision': 0.9227995758218451, 'recall': 0.8818402918524524, 'f1-score': 0.9018551145196393, 'support': 9868.0} | 0.8365 | {'precision': 0.746606885705971, 'recall': 0.7556767647839704, 'f1-score': 0.7507727002235176, 'support': 29334.0} | {'precision': 0.8357427933389249, 'recall': 0.8364696256903252, 'f1-score': 0.8356690155425791, 'support': 29334.0} |
|
96 |
|
97 |
|
98 |
### Framework versions
|
99 |
|
100 |
-
- Transformers 4.
|
101 |
-
- Pytorch 2.
|
102 |
-
- Datasets 2.
|
103 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
base_model: allenai/longformer-base-4096
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
+
- stab-gurevych-essays
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
model-index:
|
|
|
15 |
name: Token Classification
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
+
name: stab-gurevych-essays
|
19 |
+
type: stab-gurevych-essays
|
20 |
config: full_labels
|
21 |
split: train[0%:20%]
|
22 |
args: full_labels
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.8572502648576603
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# longformer-full_labels
|
33 |
|
34 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the stab-gurevych-essays dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.3818
|
37 |
+
- B-claim: {'precision': 0.5588235294117647, 'recall': 0.46830985915492956, 'f1-score': 0.5095785440613027, 'support': 284.0}
|
38 |
+
- B-majorclaim: {'precision': 0.8787878787878788, 'recall': 0.20567375886524822, 'f1-score': 0.3333333333333333, 'support': 141.0}
|
39 |
+
- B-premise: {'precision': 0.7287735849056604, 'recall': 0.8728813559322034, 'f1-score': 0.794344473007712, 'support': 708.0}
|
40 |
+
- I-claim: {'precision': 0.6021926389976507, 'recall': 0.5673880964092474, 'f1-score': 0.5842725085475498, 'support': 4066.0}
|
41 |
+
- I-majorclaim: {'precision': 0.7885196374622356, 'recall': 0.7767857142857143, 'f1-score': 0.782608695652174, 'support': 2016.0}
|
42 |
+
- I-premise: {'precision': 0.8760707709550877, 'recall': 0.8973349733497334, 'f1-score': 0.8865753868589484, 'support': 12195.0}
|
43 |
+
- O: {'precision': 0.9648159446817165, 'recall': 0.9631509491422191, 'f1-score': 0.9639827279654559, 'support': 9851.0}
|
44 |
+
- Accuracy: 0.8573
|
45 |
+
- Macro avg: {'precision': 0.7711405693145706, 'recall': 0.6787892438770422, 'f1-score': 0.693527952775211, 'support': 29261.0}
|
46 |
+
- Weighted avg: {'precision': 0.8552285449410628, 'recall': 0.8572502648576603, 'f1-score': 0.8549088561404111, 'support': 29261.0}
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
70 |
- lr_scheduler_type: linear
|
71 |
+
- num_epochs: 5
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
76 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
77 |
+
| No log | 1.0 | 41 | 0.7363 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.7931034482758621, 'recall': 0.06497175141242938, 'f1-score': 0.12010443864229765, 'support': 708.0} | {'precision': 0.35688405797101447, 'recall': 0.09690113133300542, 'f1-score': 0.15241779497098645, 'support': 4066.0} | {'precision': 0.4854771784232365, 'recall': 0.3482142857142857, 'f1-score': 0.4055459272097054, 'support': 2016.0} | {'precision': 0.7254034519284691, 'recall': 0.9546535465354653, 'f1-score': 0.8243874805268375, 'support': 12195.0} | {'precision': 0.8224254998113919, 'recall': 0.8852908334179271, 'f1-score': 0.8527010510877536, 'support': 9851.0} | 0.7349 | {'precision': 0.4547562337728534, 'recall': 0.3357187926304447, 'f1-score': 0.3364509560625115, 'support': 29261.0} | {'precision': 0.6814305221181916, 'recall': 0.7349372885410614, 'f1-score': 0.6826734788782265, 'support': 29261.0} |
|
78 |
+
| No log | 2.0 | 82 | 0.4757 | {'precision': 1.0, 'recall': 0.01056338028169014, 'f1-score': 0.020905923344947737, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6255364806866953, 'recall': 0.8234463276836158, 'f1-score': 0.7109756097560975, 'support': 708.0} | {'precision': 0.5658734764944864, 'recall': 0.4795868175110674, 'f1-score': 0.5191693290734825, 'support': 4066.0} | {'precision': 0.745417515274949, 'recall': 0.5446428571428571, 'f1-score': 0.6294067067927773, 'support': 2016.0} | {'precision': 0.8514935768456895, 'recall': 0.9022550225502255, 'f1-score': 0.8761396663614285, 'support': 12195.0} | {'precision': 0.9034811635670005, 'recall': 0.9616282610902447, 'f1-score': 0.931648308418568, 'support': 9851.0} | 0.8240 | {'precision': 0.6702574589812601, 'recall': 0.5317318094656714, 'f1-score': 0.5268922205353288, 'support': 29261.0} | {'precision': 0.8138696629123667, 'recall': 0.8239636376063703, 'f1-score': 0.8117058591419718, 'support': 29261.0} |
|
79 |
+
| No log | 3.0 | 123 | 0.4101 | {'precision': 0.49624060150375937, 'recall': 0.2323943661971831, 'f1-score': 0.31654676258992803, 'support': 284.0} | {'precision': 1.0, 'recall': 0.014184397163120567, 'f1-score': 0.027972027972027972, 'support': 141.0} | {'precision': 0.6877777777777778, 'recall': 0.8742937853107344, 'f1-score': 0.7699004975124378, 'support': 708.0} | {'precision': 0.6374125874125874, 'recall': 0.4483521888834235, 'f1-score': 0.5264221773029165, 'support': 4066.0} | {'precision': 0.7599795291709315, 'recall': 0.7366071428571429, 'f1-score': 0.7481108312342569, 'support': 2016.0} | {'precision': 0.843370836090889, 'recall': 0.9404674046740468, 'f1-score': 0.8892765759478949, 'support': 12195.0} | {'precision': 0.9602568022011617, 'recall': 0.9565526342503299, 'f1-score': 0.9584011391375101, 'support': 9851.0} | 0.8505 | {'precision': 0.7692911620224437, 'recall': 0.6004074170479973, 'f1-score': 0.6052328588138531, 'support': 29261.0} | {'precision': 0.841977868607838, 'recall': 0.8505177540070401, 'f1-score': 0.8398036418020065, 'support': 29261.0} |
|
80 |
+
| No log | 4.0 | 164 | 0.3859 | {'precision': 0.538135593220339, 'recall': 0.4471830985915493, 'f1-score': 0.48846153846153845, 'support': 284.0} | {'precision': 1.0, 'recall': 0.10638297872340426, 'f1-score': 0.19230769230769232, 'support': 141.0} | {'precision': 0.7128146453089245, 'recall': 0.8799435028248588, 'f1-score': 0.7876106194690266, 'support': 708.0} | {'precision': 0.6014307613694431, 'recall': 0.5789473684210527, 'f1-score': 0.5899749373433584, 'support': 4066.0} | {'precision': 0.7848036715961244, 'recall': 0.7633928571428571, 'f1-score': 0.7739502137289415, 'support': 2016.0} | {'precision': 0.8792672100718263, 'recall': 0.8933989339893399, 'f1-score': 0.8862767428617913, 'support': 12195.0} | {'precision': 0.9612968591691996, 'recall': 0.9631509491422191, 'f1-score': 0.9622230110034988, 'support': 9851.0} | 0.8558 | {'precision': 0.7825355343908367, 'recall': 0.6617713841193258, 'f1-score': 0.6686863935965496, 'support': 29261.0} | {'precision': 0.8550112416363399, 'recall': 0.855780732032398, 'f1-score': 0.8533403597564397, 'support': 29261.0} |
|
81 |
+
| No log | 5.0 | 205 | 0.3818 | {'precision': 0.5588235294117647, 'recall': 0.46830985915492956, 'f1-score': 0.5095785440613027, 'support': 284.0} | {'precision': 0.8787878787878788, 'recall': 0.20567375886524822, 'f1-score': 0.3333333333333333, 'support': 141.0} | {'precision': 0.7287735849056604, 'recall': 0.8728813559322034, 'f1-score': 0.794344473007712, 'support': 708.0} | {'precision': 0.6021926389976507, 'recall': 0.5673880964092474, 'f1-score': 0.5842725085475498, 'support': 4066.0} | {'precision': 0.7885196374622356, 'recall': 0.7767857142857143, 'f1-score': 0.782608695652174, 'support': 2016.0} | {'precision': 0.8760707709550877, 'recall': 0.8973349733497334, 'f1-score': 0.8865753868589484, 'support': 12195.0} | {'precision': 0.9648159446817165, 'recall': 0.9631509491422191, 'f1-score': 0.9639827279654559, 'support': 9851.0} | 0.8573 | {'precision': 0.7711405693145706, 'recall': 0.6787892438770422, 'f1-score': 0.693527952775211, 'support': 29261.0} | {'precision': 0.8552285449410628, 'recall': 0.8572502648576603, 'f1-score': 0.8549088561404111, 'support': 29261.0} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
+
- Transformers 4.45.2
|
87 |
+
- Pytorch 2.5.0+cu124
|
88 |
+
- Datasets 2.19.1
|
89 |
+
- Tokenizers 0.20.1
|
meta_data/README_s42_e5.md
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
---
|
|
|
|
|
2 |
base_model: allenai/longformer-base-4096
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
@@ -13,15 +15,15 @@ model-index:
|
|
13 |
name: Token Classification
|
14 |
type: token-classification
|
15 |
dataset:
|
16 |
-
name:
|
17 |
-
type:
|
18 |
config: full_labels
|
19 |
-
split: train[
|
20 |
args: full_labels
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,19 +31,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# longformer-full_labels
|
31 |
|
32 |
-
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- B-claim: {'precision': 0.
|
36 |
-
- B-majorclaim: {'precision': 0.
|
37 |
-
- B-premise: {'precision': 0.
|
38 |
-
- I-claim: {'precision': 0.
|
39 |
-
- I-majorclaim: {'precision': 0.
|
40 |
-
- I-premise: {'precision': 0.
|
41 |
-
- O: {'precision': 0.
|
42 |
-
- Accuracy: 0.
|
43 |
-
- Macro avg: {'precision': 0.
|
44 |
-
- Weighted avg: {'precision': 0.
|
45 |
|
46 |
## Model description
|
47 |
|
@@ -70,18 +72,18 @@ The following hyperparameters were used during training:
|
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
74 |
-
|
75 |
-
| No log | 1.0 | 41 | 0.
|
76 |
-
| No log | 2.0 | 82 | 0.
|
77 |
-
| No log | 3.0 | 123 | 0.
|
78 |
-
| No log | 4.0 | 164 | 0.
|
79 |
-
| No log | 5.0 | 205 | 0.
|
80 |
|
81 |
|
82 |
### Framework versions
|
83 |
|
84 |
-
- Transformers 4.
|
85 |
-
- Pytorch 2.
|
86 |
-
- Datasets 2.
|
87 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
base_model: allenai/longformer-base-4096
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
+
- stab-gurevych-essays
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
model-index:
|
|
|
15 |
name: Token Classification
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
+
name: stab-gurevych-essays
|
19 |
+
type: stab-gurevych-essays
|
20 |
config: full_labels
|
21 |
+
split: train[0%:20%]
|
22 |
args: full_labels
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.8572502648576603
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# longformer-full_labels
|
33 |
|
34 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the stab-gurevych-essays dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.3818
|
37 |
+
- B-claim: {'precision': 0.5588235294117647, 'recall': 0.46830985915492956, 'f1-score': 0.5095785440613027, 'support': 284.0}
|
38 |
+
- B-majorclaim: {'precision': 0.8787878787878788, 'recall': 0.20567375886524822, 'f1-score': 0.3333333333333333, 'support': 141.0}
|
39 |
+
- B-premise: {'precision': 0.7287735849056604, 'recall': 0.8728813559322034, 'f1-score': 0.794344473007712, 'support': 708.0}
|
40 |
+
- I-claim: {'precision': 0.6021926389976507, 'recall': 0.5673880964092474, 'f1-score': 0.5842725085475498, 'support': 4066.0}
|
41 |
+
- I-majorclaim: {'precision': 0.7885196374622356, 'recall': 0.7767857142857143, 'f1-score': 0.782608695652174, 'support': 2016.0}
|
42 |
+
- I-premise: {'precision': 0.8760707709550877, 'recall': 0.8973349733497334, 'f1-score': 0.8865753868589484, 'support': 12195.0}
|
43 |
+
- O: {'precision': 0.9648159446817165, 'recall': 0.9631509491422191, 'f1-score': 0.9639827279654559, 'support': 9851.0}
|
44 |
+
- Accuracy: 0.8573
|
45 |
+
- Macro avg: {'precision': 0.7711405693145706, 'recall': 0.6787892438770422, 'f1-score': 0.693527952775211, 'support': 29261.0}
|
46 |
+
- Weighted avg: {'precision': 0.8552285449410628, 'recall': 0.8572502648576603, 'f1-score': 0.8549088561404111, 'support': 29261.0}
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
76 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
77 |
+
| No log | 1.0 | 41 | 0.7363 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.7931034482758621, 'recall': 0.06497175141242938, 'f1-score': 0.12010443864229765, 'support': 708.0} | {'precision': 0.35688405797101447, 'recall': 0.09690113133300542, 'f1-score': 0.15241779497098645, 'support': 4066.0} | {'precision': 0.4854771784232365, 'recall': 0.3482142857142857, 'f1-score': 0.4055459272097054, 'support': 2016.0} | {'precision': 0.7254034519284691, 'recall': 0.9546535465354653, 'f1-score': 0.8243874805268375, 'support': 12195.0} | {'precision': 0.8224254998113919, 'recall': 0.8852908334179271, 'f1-score': 0.8527010510877536, 'support': 9851.0} | 0.7349 | {'precision': 0.4547562337728534, 'recall': 0.3357187926304447, 'f1-score': 0.3364509560625115, 'support': 29261.0} | {'precision': 0.6814305221181916, 'recall': 0.7349372885410614, 'f1-score': 0.6826734788782265, 'support': 29261.0} |
|
78 |
+
| No log | 2.0 | 82 | 0.4757 | {'precision': 1.0, 'recall': 0.01056338028169014, 'f1-score': 0.020905923344947737, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6255364806866953, 'recall': 0.8234463276836158, 'f1-score': 0.7109756097560975, 'support': 708.0} | {'precision': 0.5658734764944864, 'recall': 0.4795868175110674, 'f1-score': 0.5191693290734825, 'support': 4066.0} | {'precision': 0.745417515274949, 'recall': 0.5446428571428571, 'f1-score': 0.6294067067927773, 'support': 2016.0} | {'precision': 0.8514935768456895, 'recall': 0.9022550225502255, 'f1-score': 0.8761396663614285, 'support': 12195.0} | {'precision': 0.9034811635670005, 'recall': 0.9616282610902447, 'f1-score': 0.931648308418568, 'support': 9851.0} | 0.8240 | {'precision': 0.6702574589812601, 'recall': 0.5317318094656714, 'f1-score': 0.5268922205353288, 'support': 29261.0} | {'precision': 0.8138696629123667, 'recall': 0.8239636376063703, 'f1-score': 0.8117058591419718, 'support': 29261.0} |
|
79 |
+
| No log | 3.0 | 123 | 0.4101 | {'precision': 0.49624060150375937, 'recall': 0.2323943661971831, 'f1-score': 0.31654676258992803, 'support': 284.0} | {'precision': 1.0, 'recall': 0.014184397163120567, 'f1-score': 0.027972027972027972, 'support': 141.0} | {'precision': 0.6877777777777778, 'recall': 0.8742937853107344, 'f1-score': 0.7699004975124378, 'support': 708.0} | {'precision': 0.6374125874125874, 'recall': 0.4483521888834235, 'f1-score': 0.5264221773029165, 'support': 4066.0} | {'precision': 0.7599795291709315, 'recall': 0.7366071428571429, 'f1-score': 0.7481108312342569, 'support': 2016.0} | {'precision': 0.843370836090889, 'recall': 0.9404674046740468, 'f1-score': 0.8892765759478949, 'support': 12195.0} | {'precision': 0.9602568022011617, 'recall': 0.9565526342503299, 'f1-score': 0.9584011391375101, 'support': 9851.0} | 0.8505 | {'precision': 0.7692911620224437, 'recall': 0.6004074170479973, 'f1-score': 0.6052328588138531, 'support': 29261.0} | {'precision': 0.841977868607838, 'recall': 0.8505177540070401, 'f1-score': 0.8398036418020065, 'support': 29261.0} |
|
80 |
+
| No log | 4.0 | 164 | 0.3859 | {'precision': 0.538135593220339, 'recall': 0.4471830985915493, 'f1-score': 0.48846153846153845, 'support': 284.0} | {'precision': 1.0, 'recall': 0.10638297872340426, 'f1-score': 0.19230769230769232, 'support': 141.0} | {'precision': 0.7128146453089245, 'recall': 0.8799435028248588, 'f1-score': 0.7876106194690266, 'support': 708.0} | {'precision': 0.6014307613694431, 'recall': 0.5789473684210527, 'f1-score': 0.5899749373433584, 'support': 4066.0} | {'precision': 0.7848036715961244, 'recall': 0.7633928571428571, 'f1-score': 0.7739502137289415, 'support': 2016.0} | {'precision': 0.8792672100718263, 'recall': 0.8933989339893399, 'f1-score': 0.8862767428617913, 'support': 12195.0} | {'precision': 0.9612968591691996, 'recall': 0.9631509491422191, 'f1-score': 0.9622230110034988, 'support': 9851.0} | 0.8558 | {'precision': 0.7825355343908367, 'recall': 0.6617713841193258, 'f1-score': 0.6686863935965496, 'support': 29261.0} | {'precision': 0.8550112416363399, 'recall': 0.855780732032398, 'f1-score': 0.8533403597564397, 'support': 29261.0} |
|
81 |
+
| No log | 5.0 | 205 | 0.3818 | {'precision': 0.5588235294117647, 'recall': 0.46830985915492956, 'f1-score': 0.5095785440613027, 'support': 284.0} | {'precision': 0.8787878787878788, 'recall': 0.20567375886524822, 'f1-score': 0.3333333333333333, 'support': 141.0} | {'precision': 0.7287735849056604, 'recall': 0.8728813559322034, 'f1-score': 0.794344473007712, 'support': 708.0} | {'precision': 0.6021926389976507, 'recall': 0.5673880964092474, 'f1-score': 0.5842725085475498, 'support': 4066.0} | {'precision': 0.7885196374622356, 'recall': 0.7767857142857143, 'f1-score': 0.782608695652174, 'support': 2016.0} | {'precision': 0.8760707709550877, 'recall': 0.8973349733497334, 'f1-score': 0.8865753868589484, 'support': 12195.0} | {'precision': 0.9648159446817165, 'recall': 0.9631509491422191, 'f1-score': 0.9639827279654559, 'support': 9851.0} | 0.8573 | {'precision': 0.7711405693145706, 'recall': 0.6787892438770422, 'f1-score': 0.693527952775211, 'support': 29261.0} | {'precision': 0.8552285449410628, 'recall': 0.8572502648576603, 'f1-score': 0.8549088561404111, 'support': 29261.0} |
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
+
- Transformers 4.45.2
|
87 |
+
- Pytorch 2.5.0+cu124
|
88 |
+
- Datasets 2.19.1
|
89 |
+
- Tokenizers 0.20.1
|
meta_data/meta_s42_e5_cvi0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"B-Claim": {"precision": 0.
|
|
|
1 |
+
{"B-Claim": {"precision": 0.5588235294117647, "recall": 0.46830985915492956, "f1-score": 0.5095785440613027, "support": 284.0}, "B-MajorClaim": {"precision": 0.8787878787878788, "recall": 0.20567375886524822, "f1-score": 0.3333333333333333, "support": 141.0}, "B-Premise": {"precision": 0.7287735849056604, "recall": 0.8728813559322034, "f1-score": 0.794344473007712, "support": 708.0}, "I-Claim": {"precision": 0.6021926389976507, "recall": 0.5673880964092474, "f1-score": 0.5842725085475498, "support": 4066.0}, "I-MajorClaim": {"precision": 0.7885196374622356, "recall": 0.7767857142857143, "f1-score": 0.782608695652174, "support": 2016.0}, "I-Premise": {"precision": 0.8760707709550877, "recall": 0.8973349733497334, "f1-score": 0.8865753868589484, "support": 12195.0}, "O": {"precision": 0.9648159446817165, "recall": 0.9631509491422191, "f1-score": 0.9639827279654559, "support": 9851.0}, "accuracy": 0.8572502648576603, "macro avg": {"precision": 0.7711405693145706, "recall": 0.6787892438770422, "f1-score": 0.693527952775211, "support": 29261.0}, "weighted avg": {"precision": 0.8552285449410628, "recall": 0.8572502648576603, "f1-score": 0.8549088561404111, "support": 29261.0}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d30c23be2928784a7f3e7fc8e81454da6a65a6a68935393ae19ac842976b75b
|
3 |
size 592330980
|