Theoreticallyhugo
commited on
trainer: training complete at 2024-02-06 18:48:18.140397.
Browse files- README.md +86 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: allenai/longformer-base-4096
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- fancy_dataset
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: longformer-sep_tok
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: fancy_dataset
|
18 |
+
type: fancy_dataset
|
19 |
+
config: sep_tok
|
20 |
+
split: test
|
21 |
+
args: sep_tok
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8681852998967596
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# longformer-sep_tok
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3013
|
36 |
+
- B-claim: {'precision': 0.3954802259887006, 'recall': 0.2527075812274368, 'f1-score': 0.30837004405286345, 'support': 277.0}
|
37 |
+
- B-majorclaim: {'precision': 0.6666666666666666, 'recall': 0.0425531914893617, 'f1-score': 0.08, 'support': 141.0}
|
38 |
+
- B-premise: {'precision': 0.7548076923076923, 'recall': 0.9797191887675507, 'f1-score': 0.8526816021724372, 'support': 641.0}
|
39 |
+
- I-claim: {'precision': 0.5792199878123095, 'recall': 0.4660455994116205, 'f1-score': 0.5165059095231627, 'support': 4079.0}
|
40 |
+
- I-majorclaim: {'precision': 0.7457245724572458, 'recall': 0.8118569328760411, 'f1-score': 0.7773868167956838, 'support': 2041.0}
|
41 |
+
- I-premise: {'precision': 0.8603904126513466, 'recall': 0.9119161938018333, 'f1-score': 0.8854043058145448, 'support': 11455.0}
|
42 |
+
- O: {'precision': 0.9997360084477297, 'recall': 0.9971912577898709, 'f1-score': 0.9984620116887112, 'support': 11393.0}
|
43 |
+
- Accuracy: 0.8682
|
44 |
+
- Macro avg: {'precision': 0.7145750809045274, 'recall': 0.6374271350519594, 'f1-score': 0.6312586700067718, 'support': 30027.0}
|
45 |
+
- Weighted avg: {'precision': 0.8598197108337798, 'recall': 0.8681852998967596, 'f1-score': 0.8610425793284459, 'support': 30027.0}
|
46 |
+
|
47 |
+
## Model description
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Intended uses & limitations
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training and evaluation data
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training procedure
|
60 |
+
|
61 |
+
### Training hyperparameters
|
62 |
+
|
63 |
+
The following hyperparameters were used during training:
|
64 |
+
- learning_rate: 2e-05
|
65 |
+
- train_batch_size: 8
|
66 |
+
- eval_batch_size: 8
|
67 |
+
- seed: 42
|
68 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
69 |
+
- lr_scheduler_type: linear
|
70 |
+
- num_epochs: 3
|
71 |
+
|
72 |
+
### Training results
|
73 |
+
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.4523 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6806833114323259, 'recall': 0.8081123244929798, 'f1-score': 0.738944365192582, 'support': 641.0} | {'precision': 0.4538361508452536, 'recall': 0.17112037264035304, 'f1-score': 0.248531244436532, 'support': 4079.0} | {'precision': 0.6357986326911125, 'recall': 0.5012248897599216, 'f1-score': 0.5605479452054795, 'support': 2041.0} | {'precision': 0.7754845907125923, 'recall': 0.9709297250109122, 'f1-score': 0.8622708066829476, 'support': 11455.0} | {'precision': 0.961874840791373, 'recall': 0.9942947423856754, 'f1-score': 0.9778161415623651, 'support': 11393.0} | 0.8222 | {'precision': 0.5010967894960939, 'recall': 0.4922402934699774, 'f1-score': 0.4840157861542723, 'support': 30027.0} | {'precision': 0.7801977126918217, 'recall': 0.8222266626702635, 'f1-score': 0.7875935668459264, 'support': 30027.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.3203 | {'precision': 0.24675324675324675, 'recall': 0.06859205776173286, 'f1-score': 0.10734463276836159, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6780383795309168, 'recall': 0.9921996879875195, 'f1-score': 0.8055731475617479, 'support': 641.0} | {'precision': 0.5418703160638645, 'recall': 0.407697965187546, 'f1-score': 0.46530498041410184, 'support': 4079.0} | {'precision': 0.7875560538116592, 'recall': 0.6883880450759432, 'f1-score': 0.7346405228758172, 'support': 2041.0} | {'precision': 0.8346739554861382, 'recall': 0.9330423395896988, 'f1-score': 0.8811211871393239, 'support': 11455.0} | {'precision': 0.9997357759379955, 'recall': 0.9963135258492056, 'f1-score': 0.9980217171495142, 'support': 11393.0} | 0.8580 | {'precision': 0.5840896753691174, 'recall': 0.583747660207378, 'f1-score': 0.5702865982726951, 'support': 30027.0} | {'precision': 0.8416373274399493, 'recall': 0.8579611682818796, 'f1-score': 0.8461448628010773, 'support': 30027.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.3013 | {'precision': 0.3954802259887006, 'recall': 0.2527075812274368, 'f1-score': 0.30837004405286345, 'support': 277.0} | {'precision': 0.6666666666666666, 'recall': 0.0425531914893617, 'f1-score': 0.08, 'support': 141.0} | {'precision': 0.7548076923076923, 'recall': 0.9797191887675507, 'f1-score': 0.8526816021724372, 'support': 641.0} | {'precision': 0.5792199878123095, 'recall': 0.4660455994116205, 'f1-score': 0.5165059095231627, 'support': 4079.0} | {'precision': 0.7457245724572458, 'recall': 0.8118569328760411, 'f1-score': 0.7773868167956838, 'support': 2041.0} | {'precision': 0.8603904126513466, 'recall': 0.9119161938018333, 'f1-score': 0.8854043058145448, 'support': 11455.0} | {'precision': 0.9997360084477297, 'recall': 0.9971912577898709, 'f1-score': 0.9984620116887112, 'support': 11393.0} | 0.8682 | {'precision': 0.7145750809045274, 'recall': 0.6374271350519594, 'f1-score': 0.6312586700067718, 'support': 30027.0} | {'precision': 0.8598197108337798, 'recall': 0.8681852998967596, 'f1-score': 0.8610425793284459, 'support': 30027.0} |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.37.1
|
84 |
+
- Pytorch 2.1.2+cu121
|
85 |
+
- Datasets 2.16.1
|
86 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac9dd5742133824d16209428885eaa7c8c92d2e898abb88eb4e12ca5c84aec81
|
3 |
size 592330980
|