Theoreticallyhugo commited on
Commit
1f5872a
·
verified ·
1 Parent(s): b90724b

trainer: training complete at 2024-04-23 12:40:09.588057.

Browse files
Files changed (3) hide show
  1. README.md +31 -61
  2. meta_data/README_s42_e20.md +100 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -17,12 +17,12 @@ model-index:
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: sep_tok
20
- split: train[80%:100%]
21
  args: sep_tok
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9138865510856758
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.7436
36
- - Claim: {'precision': 0.700735294117647, 'recall': 0.6859404990403071, 'f1-score': 0.6932589718719689, 'support': 4168.0}
37
- - Majorclaim: {'precision': 0.9293954776188279, 'recall': 0.9358736059479554, 'f1-score': 0.932623292428803, 'support': 2152.0}
38
- - O: {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0}
39
- - Premise: {'precision': 0.9025936599423631, 'recall': 0.9079764764350203, 'f1-score': 0.9052770666446445, 'support': 12073.0}
40
- - Accuracy: 0.9139
41
- - Macro avg: {'precision': 0.8831590094489237, 'recall': 0.8824476453558208, 'f1-score': 0.8827787830125972, 'support': 29705.0}
42
- - Weighted avg: {'precision': 0.9132717427569804, 'recall': 0.9138865510856758, 'f1-score': 0.9135640049745629, 'support': 29705.0}
43
 
44
  ## Model description
45
 
@@ -64,62 +64,32 @@ The following hyperparameters were used during training:
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 50
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 81 | 0.2830 | {'precision': 0.5768789443488239, 'recall': 0.4824856046065259, 'f1-score': 0.5254768748366867, 'support': 4168.0} | {'precision': 0.7495921696574225, 'recall': 0.854089219330855, 'f1-score': 0.7984361424847959, 'support': 2152.0} | {'precision': 0.9988511841640155, 'recall': 0.9992043847241867, 'f1-score': 0.9990277532260916, 'support': 11312.0} | {'precision': 0.8719781543651113, 'recall': 0.8992793837488611, 'f1-score': 0.8854183656825966, 'support': 12073.0} | 0.8756 | {'precision': 0.7993251131338432, 'recall': 0.8087646481026072, 'f1-score': 0.8020897840575427, 'support': 29705.0} | {'precision': 0.8700202202343714, 'recall': 0.8755765022723447, 'f1-score': 0.8718761173649596, 'support': 29705.0} |
74
- | No log | 2.0 | 162 | 0.2736 | {'precision': 0.6124497991967871, 'recall': 0.5122360844529751, 'f1-score': 0.5578782336033447, 'support': 4168.0} | {'precision': 0.9571619812583668, 'recall': 0.6644981412639405, 'f1-score': 0.784421283598464, 'support': 2152.0} | {'precision': 0.9997348652231551, 'recall': 1.0, 'f1-score': 0.9998674150351351, 'support': 11312.0} | {'precision': 0.8530201342281879, 'recall': 0.9474861260664292, 'f1-score': 0.8977749872463995, 'support': 12073.0} | 0.8859 | {'precision': 0.8555916949766242, 'recall': 0.7810550879458362, 'f1-score': 0.8099854798708358, 'support': 29705.0} | {'precision': 0.8826802296805741, 'recall': 0.8859114627167144, 'f1-score': 0.8807489883812781, 'support': 29705.0} |
75
- | No log | 3.0 | 243 | 0.2259 | {'precision': 0.6627322953289804, 'recall': 0.6331573896353166, 'f1-score': 0.64760736196319, 'support': 4168.0} | {'precision': 0.8881875563570785, 'recall': 0.9154275092936803, 'f1-score': 0.9016018306636155, 'support': 2152.0} | {'precision': 1.0, 'recall': 0.9993811881188119, 'f1-score': 0.9996904982977407, 'support': 11312.0} | {'precision': 0.8936065573770492, 'recall': 0.9030067091857865, 'f1-score': 0.8982820417748115, 'support': 12073.0} | 0.9027 | {'precision': 0.861131602265777, 'recall': 0.8627431990583988, 'f1-score': 0.8617954331748394, 'support': 29705.0} | {'precision': 0.9013351218793044, 'recall': 0.9027436458508669, 'f1-score': 0.9019670975035187, 'support': 29705.0} |
76
- | No log | 4.0 | 324 | 0.3234 | {'precision': 0.5561865427637239, 'recall': 0.7754318618042226, 'f1-score': 0.6477602966229081, 'support': 4168.0} | {'precision': 0.8627031650983746, 'recall': 0.9372676579925651, 'f1-score': 0.8984409799554566, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9384029675907849, 'recall': 0.7962395427814131, 'f1-score': 0.861495720750997, 'support': 12073.0} | 0.8811 | {'precision': 0.8393231688632209, 'recall': 0.8772347656445502, 'f1-score': 0.8519242493323405, 'support': 29705.0} | {'precision': 0.9027457246003854, 'recall': 0.8811311227066151, 'f1-score': 0.8869263673393438, 'support': 29705.0} |
77
- | No log | 5.0 | 405 | 0.3072 | {'precision': 0.6833864888373442, 'recall': 0.5654990403071017, 'f1-score': 0.6188788236838649, 'support': 4168.0} | {'precision': 0.9230033476805356, 'recall': 0.8968401486988847, 'f1-score': 0.909733679000707, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8706816059757236, 'recall': 0.9268615919821088, 'f1-score': 0.8978936810431294, 'support': 12073.0} | 0.9018 | {'precision': 0.8692457621526151, 'recall': 0.8473001952470238, 'f1-score': 0.8566154962081685, 'support': 29705.0} | {'precision': 0.8974043833368577, 'recall': 0.9018347079616226, 'f1-score': 0.8984684143294738, 'support': 29705.0} |
78
- | No log | 6.0 | 486 | 0.3635 | {'precision': 0.6545212765957447, 'recall': 0.5904510556621881, 'f1-score': 0.620837537840565, 'support': 4168.0} | {'precision': 0.8547509418166597, 'recall': 0.9488847583643123, 'f1-score': 0.8993613741466637, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8869558114841134, 'recall': 0.8994450426571688, 'f1-score': 0.8931567692054615, 'support': 12073.0} | 0.8980 | {'precision': 0.8490349090033436, 'recall': 0.8596952141709173, 'f1-score': 0.8533278705744156, 'support': 29705.0} | {'precision': 0.8950239457358053, 'recall': 0.8979633058407676, 'f1-score': 0.8960665959131486, 'support': 29705.0} |
79
- | 0.214 | 7.0 | 567 | 0.3469 | {'precision': 0.6769303647560397, 'recall': 0.685700575815739, 'f1-score': 0.6812872467222885, 'support': 4168.0} | {'precision': 0.9319887429643527, 'recall': 0.9233271375464684, 'f1-score': 0.9276377217553688, 'support': 2152.0} | {'precision': 0.9999115983026874, 'recall': 0.9999115983026874, 'f1-score': 0.9999115983026874, 'support': 11312.0} | {'precision': 0.9029819752471135, 'recall': 0.9004389961070156, 'f1-score': 0.9017086927670869, 'support': 12073.0} | 0.9098 | {'precision': 0.8779531703175483, 'recall': 0.8773445769429775, 'f1-score': 0.8776363148868579, 'support': 29705.0} | {'precision': 0.910277290769933, 'recall': 0.9098468271334792, 'f1-score': 0.9100559053806798, 'support': 29705.0} |
80
- | 0.214 | 8.0 | 648 | 0.4017 | {'precision': 0.6105725260654838, 'recall': 0.8008637236084453, 'f1-score': 0.6928905033731187, 'support': 4168.0} | {'precision': 0.9278779472954231, 'recall': 0.9326208178438662, 'f1-score': 0.9302433371958285, 'support': 2152.0} | {'precision': 1.0, 'recall': 0.9998231966053748, 'f1-score': 0.9999115904871364, 'support': 11312.0} | {'precision': 0.9356247097073851, 'recall': 0.8342582622380519, 'f1-score': 0.8820387074174622, 'support': 12073.0} | 0.8997 | {'precision': 0.868518795767073, 'recall': 0.8918915000739345, 'f1-score': 0.8762710346183864, 'support': 29705.0} | {'precision': 0.9139692560686062, 'recall': 0.8997475172529877, 'f1-score': 0.9038782866839282, 'support': 29705.0} |
81
- | 0.214 | 9.0 | 729 | 0.4713 | {'precision': 0.7130531589201224, 'recall': 0.6146833013435701, 'f1-score': 0.6602241979126401, 'support': 4168.0} | {'precision': 0.8839681133746679, 'recall': 0.9275092936802974, 'f1-score': 0.9052154195011338, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8903596204449405, 'recall': 0.9248736850824153, 'f1-score': 0.9072885349800925, 'support': 12073.0} | 0.9101 | {'precision': 0.8718231247141469, 'recall': 0.8667665700265708, 'f1-score': 0.8681709883747097, 'support': 29705.0} | {'precision': 0.9067368029754924, 'recall': 0.910149806429894, 'f1-score': 0.9077607320175198, 'support': 29705.0} |
82
- | 0.214 | 10.0 | 810 | 0.4968 | {'precision': 0.6562300319488817, 'recall': 0.7392034548944337, 'f1-score': 0.6952499153785399, 'support': 4168.0} | {'precision': 0.9344422700587084, 'recall': 0.887546468401487, 'f1-score': 0.9103908484270734, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9174532349407929, 'recall': 0.8856125238134681, 'f1-score': 0.9012517385257303, 'support': 12073.0} | 0.9088 | {'precision': 0.8770313842370958, 'recall': 0.8780906117773473, 'f1-score': 0.8767231255828358, 'support': 29705.0} | {'precision': 0.9134657277821738, 'recall': 0.9087695674128935, 'f1-score': 0.9106135328171674, 'support': 29705.0} |
83
- | 0.214 | 11.0 | 891 | 0.5865 | {'precision': 0.6913151364764268, 'recall': 0.668426103646833, 'f1-score': 0.6796779702366431, 'support': 4168.0} | {'precision': 0.9079646017699115, 'recall': 0.9535315985130112, 'f1-score': 0.9301903898458749, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9008428358948934, 'recall': 0.9030067091857865, 'f1-score': 0.901923474663909, 'support': 12073.0} | 0.9107 | {'precision': 0.8750085450645222, 'recall': 0.8812411028364077, 'f1-score': 0.8779369089628499, 'support': 29705.0} | {'precision': 0.9096858090555641, 'recall': 0.9106884362901868, 'f1-score': 0.9101191594213591, 'support': 29705.0} |
84
- | 0.214 | 12.0 | 972 | 0.5556 | {'precision': 0.6425824731835661, 'recall': 0.7617562380038387, 'f1-score': 0.697112745636184, 'support': 4168.0} | {'precision': 0.920556552962298, 'recall': 0.9530669144981413, 'f1-score': 0.9365296803652968, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9260513186029936, 'recall': 0.8609293464756067, 'f1-score': 0.8923037300940034, 'support': 12073.0} | 0.9066 | {'precision': 0.8722975861872144, 'recall': 0.8939381247443967, 'f1-score': 0.8814865390238711, 'support': 29705.0} | {'precision': 0.9140393543072853, 'recall': 0.9066487123379903, 'f1-score': 0.9091318205481447, 'support': 29705.0} |
85
- | 0.0252 | 13.0 | 1053 | 0.5548 | {'precision': 0.7212470526591565, 'recall': 0.6605086372360844, 'f1-score': 0.6895428929242329, 'support': 4168.0} | {'precision': 0.9069870939029817, 'recall': 0.9470260223048327, 'f1-score': 0.9265742214139577, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8989292667099286, 'recall': 0.917916010933488, 'f1-score': 0.9083234293676489, 'support': 12073.0} | 0.9152 | {'precision': 0.8817687548472308, 'recall': 0.8813626676186013, 'f1-score': 0.8810990862027029, 'support': 29705.0} | {'precision': 0.9130371003853032, 'recall': 0.9151657970038714, 'f1-score': 0.9138424940934561, 'support': 29705.0} |
86
- | 0.0252 | 14.0 | 1134 | 0.5989 | {'precision': 0.6706368497812348, 'recall': 0.6619481765834933, 'f1-score': 0.6662641873943491, 'support': 4168.0} | {'precision': 0.9337434926644581, 'recall': 0.91682156133829, 'f1-score': 0.9252051582649472, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8933914187078744, 'recall': 0.9002733371987078, 'f1-score': 0.8968191757085687, 'support': 12073.0} | 0.9060 | {'precision': 0.8744429402883919, 'recall': 0.8697607687801228, 'f1-score': 0.8720721303419663, 'support': 29705.0} | {'precision': 0.9056571278963901, 'recall': 0.9060090893788925, 'f1-score': 0.9058181633386757, 'support': 29705.0} |
87
- | 0.0252 | 15.0 | 1215 | 0.5878 | {'precision': 0.7189061267420458, 'recall': 0.6559500959692899, 'f1-score': 0.6859867017940033, 'support': 4168.0} | {'precision': 0.9410912602607436, 'recall': 0.9056691449814126, 'f1-score': 0.9230404925408477, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.89272306094736, 'recall': 0.9257019796239543, 'f1-score': 0.9089134677944047, 'support': 12073.0} | 0.9147 | {'precision': 0.8881801119875374, 'recall': 0.8718303051436642, 'f1-score': 0.8794851655323139, 'support': 29705.0} | {'precision': 0.9126906124611831, 'recall': 0.9146944958761152, 'f1-score': 0.9133441511431463, 'support': 29705.0} |
88
- | 0.0252 | 16.0 | 1296 | 0.5438 | {'precision': 0.6844300278035218, 'recall': 0.7087332053742802, 'f1-score': 0.6963696369636965, 'support': 4168.0} | {'precision': 0.9468033186920449, 'recall': 0.9014869888475836, 'f1-score': 0.9235896215186861, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9065513801130695, 'recall': 0.9031723680940943, 'f1-score': 0.9048587195552051, 'support': 12073.0} | 0.9126 | {'precision': 0.884446181652159, 'recall': 0.8783481405789896, 'f1-score': 0.881204494509397, 'support': 29705.0} | {'precision': 0.9138872213369954, 'recall': 0.9126409695337485, 'f1-score': 0.913192823886985, 'support': 29705.0} |
89
- | 0.0252 | 17.0 | 1377 | 0.6229 | {'precision': 0.7666776207689779, 'recall': 0.5597408829174664, 'f1-score': 0.647066981001248, 'support': 4168.0} | {'precision': 0.8876889848812095, 'recall': 0.9549256505576208, 'f1-score': 0.9200805910006717, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8760165720423507, 'recall': 0.9457467075291974, 'f1-score': 0.9095471382482972, 'support': 12073.0} | 0.9129 | {'precision': 0.8825736959523487, 'recall': 0.8651033102510712, 'f1-score': 0.8691626278387974, 'support': 29705.0} | {'precision': 0.9087011338660376, 'recall': 0.912910284463895, 'f1-score': 0.9079094842894391, 'support': 29705.0} |
90
- | 0.0252 | 18.0 | 1458 | 0.5978 | {'precision': 0.6511780104712042, 'recall': 0.7161708253358925, 'f1-score': 0.6821297989031078, 'support': 4168.0} | {'precision': 0.9169724770642201, 'recall': 0.9289033457249071, 'f1-score': 0.922899353647276, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9112487100103199, 'recall': 0.8776608962146939, 'f1-score': 0.8941394877853255, 'support': 12073.0} | 0.9053 | {'precision': 0.8698277009156502, 'recall': 0.8806837668188734, 'f1-score': 0.8747811103601705, 'support': 29705.0} | {'precision': 0.9089358856298488, 'recall': 0.9053021376872581, 'f1-score': 0.9067713337488226, 'support': 29705.0} |
91
- | 0.0101 | 19.0 | 1539 | 0.6089 | {'precision': 0.711257519335434, 'recall': 0.5957293666026872, 'f1-score': 0.6483875179527353, 'support': 4168.0} | {'precision': 0.9259431765253843, 'recall': 0.9237918215613383, 'f1-score': 0.9248662479646429, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8779302234417875, 'recall': 0.92752422761534, 'f1-score': 0.9020460770098276, 'support': 12073.0} | 0.9083 | {'precision': 0.8787827298256514, 'recall': 0.8617613539448413, 'f1-score': 0.8688249607318015, 'support': 29705.0} | {'precision': 0.9045077476547858, 'recall': 0.9082982662851372, 'f1-score': 0.9054096491562553, 'support': 29705.0} |
92
- | 0.0101 | 20.0 | 1620 | 0.6036 | {'precision': 0.66363819907127, 'recall': 0.7886276391554703, 'f1-score': 0.7207543032562219, 'support': 4168.0} | {'precision': 0.9459078080903104, 'recall': 0.9344795539033457, 'f1-score': 0.9401589527816735, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9299982322785929, 'recall': 0.8715315166073055, 'f1-score': 0.8998161371702227, 'support': 12073.0} | 0.9134 | {'precision': 0.8848860598600434, 'recall': 0.8986596774165303, 'f1-score': 0.8901823483020296, 'support': 29705.0} | {'precision': 0.9204344815700675, 'recall': 0.9133815855916513, 'f1-score': 0.9157652323317351, 'support': 29705.0} |
93
- | 0.0101 | 21.0 | 1701 | 0.6373 | {'precision': 0.7248196633716271, 'recall': 0.650911708253359, 'f1-score': 0.6858804196688157, 'support': 4168.0} | {'precision': 0.9418113561708118, 'recall': 0.9326208178438662, 'f1-score': 0.9371935559187485, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8915248821790878, 'recall': 0.9244595378116458, 'f1-score': 0.907693558880937, 'support': 12073.0} | 0.9154 | {'precision': 0.8895389754303817, 'recall': 0.8769980159772177, 'f1-score': 0.8826918836171254, 'support': 29705.0} | {'precision': 0.9130855511853444, 'recall': 0.9154351119340178, 'f1-score': 0.913858759733591, 'support': 29705.0} |
94
- | 0.0101 | 22.0 | 1782 | 0.6425 | {'precision': 0.6827107279693486, 'recall': 0.684021113243762, 'f1-score': 0.6833652924256951, 'support': 4168.0} | {'precision': 0.8973136915077989, 'recall': 0.962360594795539, 'f1-score': 0.9286995515695068, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9070372858582466, 'recall': 0.8946409343162428, 'f1-score': 0.9007964638672282, 'support': 12073.0} | 0.9101 | {'precision': 0.8717433278630627, 'recall': 0.8852556605888859, 'f1-score': 0.8782042772418507, 'support': 29705.0} | {'precision': 0.910224494827858, 'recall': 0.9101161420636257, 'f1-score': 0.9100704832242509, 'support': 29705.0} |
95
- | 0.0101 | 23.0 | 1863 | 0.6442 | {'precision': 0.6941337594156586, 'recall': 0.7296065259117083, 'f1-score': 0.7114282372207277, 'support': 4168.0} | {'precision': 0.918018018018018, 'recall': 0.9470260223048327, 'f1-score': 0.9322964318389753, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9177408412483039, 'recall': 0.8963803528534747, 'f1-score': 0.9069348418185628, 'support': 12073.0} | 0.9161 | {'precision': 0.8824731546704951, 'recall': 0.893253225267504, 'f1-score': 0.8876648777195664, 'support': 29705.0} | {'precision': 0.917711141572463, 'recall': 0.9161083992593839, 'f1-score': 0.9167803117094421, 'support': 29705.0} |
96
- | 0.0101 | 24.0 | 1944 | 0.6410 | {'precision': 0.6809843400447427, 'recall': 0.7303262955854126, 'f1-score': 0.70479277610558, 'support': 4168.0} | {'precision': 0.915985467756585, 'recall': 0.9372676579925651, 'f1-score': 0.9265043638033992, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.917754457810767, 'recall': 0.8909964383334714, 'f1-score': 0.904177523745482, 'support': 12073.0} | 0.9133 | {'precision': 0.8786810664030237, 'recall': 0.8896475979778622, 'f1-score': 0.8838686659136152, 'support': 29705.0} | {'precision': 0.9157243906772613, 'recall': 0.9133142568591146, 'f1-score': 0.9143090027231838, 'support': 29705.0} |
97
- | 0.0041 | 25.0 | 2025 | 0.6537 | {'precision': 0.761817627325404, 'recall': 0.5993282149712092, 'f1-score': 0.6708741775211494, 'support': 4168.0} | {'precision': 0.9236430542778289, 'recall': 0.9330855018587361, 'f1-score': 0.9283402681460935, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.881839258114374, 'recall': 0.94516690135012, 'f1-score': 0.9124055491144605, 'support': 12073.0} | 0.9166 | {'precision': 0.8918249849294018, 'recall': 0.8693951545450163, 'f1-score': 0.8779049986954259, 'support': 29705.0} | {'precision': 0.9130241066053866, 'recall': 0.9166470291196768, 'f1-score': 0.9130268986169812, 'support': 29705.0} |
98
- | 0.0041 | 26.0 | 2106 | 0.6640 | {'precision': 0.682358215646716, 'recall': 0.7303262955854126, 'f1-score': 0.7055278711322285, 'support': 4168.0} | {'precision': 0.9260808926080892, 'recall': 0.9256505576208178, 'f1-score': 0.9258656751103881, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9157894736842105, 'recall': 0.8935641514122422, 'f1-score': 0.9045403093950447, 'support': 12073.0} | 0.9135 | {'precision': 0.8810350470139681, 'recall': 0.8873852511546182, 'f1-score': 0.8839724141856584, 'support': 29705.0} | {'precision': 0.9158162439956733, 'recall': 0.9135162430567244, 'f1-score': 0.9144964914035518, 'support': 29705.0} |
99
- | 0.0041 | 27.0 | 2187 | 0.6806 | {'precision': 0.7442748091603053, 'recall': 0.6082053742802304, 'f1-score': 0.6693952997095327, 'support': 4168.0} | {'precision': 0.9292604501607717, 'recall': 0.9400557620817844, 'f1-score': 0.9346269346269347, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8811085089773615, 'recall': 0.9348960490350369, 'f1-score': 0.9072057227826226, 'support': 12073.0} | 0.9142 | {'precision': 0.8886609420746096, 'recall': 0.8707892963492629, 'f1-score': 0.8778069892797724, 'support': 29705.0} | {'precision': 0.9106725777549173, 'recall': 0.9142231947483589, 'f1-score': 0.9111614699094798, 'support': 29705.0} |
100
- | 0.0041 | 28.0 | 2268 | 0.6814 | {'precision': 0.6839739267251068, 'recall': 0.7300863723608445, 'f1-score': 0.7062782871068818, 'support': 4168.0} | {'precision': 0.9005305039787799, 'recall': 0.9465613382899628, 'f1-score': 0.9229723606705936, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9208183530217429, 'recall': 0.8909964383334714, 'f1-score': 0.9056619659019154, 'support': 12073.0} | 0.9140 | {'precision': 0.8763306959314074, 'recall': 0.8919110372460697, 'f1-score': 0.8837281534198478, 'support': 29705.0} | {'precision': 0.9162694814739634, 'recall': 0.9139538798182124, 'f1-score': 0.914864882516695, 'support': 29705.0} |
101
- | 0.0041 | 29.0 | 2349 | 0.7109 | {'precision': 0.7038007863695938, 'recall': 0.644193857965451, 'f1-score': 0.6726794438181135, 'support': 4168.0} | {'precision': 0.9101876675603218, 'recall': 0.9465613382899628, 'f1-score': 0.9280182232346242, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8940756949509685, 'recall': 0.9137745382257931, 'f1-score': 0.9038177945272816, 'support': 12073.0} | 0.9112 | {'precision': 0.8769939387494352, 'recall': 0.8761324336203018, 'f1-score': 0.8761178156712479, 'support': 29705.0} | {'precision': 0.9088483922476083, 'recall': 0.9111597374179431, 'f1-score': 0.9097497186891812, 'support': 29705.0} |
102
- | 0.0041 | 30.0 | 2430 | 0.6746 | {'precision': 0.7230121116377041, 'recall': 0.6588291746641075, 'f1-score': 0.6894300778307808, 'support': 4168.0} | {'precision': 0.9276887871853547, 'recall': 0.9419144981412639, 'f1-score': 0.934747521328107, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8963738920225625, 'recall': 0.9213948480079516, 'f1-score': 0.9087121676265164, 'support': 12073.0} | 0.9160 | {'precision': 0.8867686977114053, 'recall': 0.8805346302033308, 'f1-score': 0.883222441696351, 'support': 29705.0} | {'precision': 0.9137795909684305, 'recall': 0.9159737417943107, 'f1-score': 0.9145936115149541, 'support': 29705.0} |
103
- | 0.0026 | 31.0 | 2511 | 0.6795 | {'precision': 0.71953166577967, 'recall': 0.6487523992322457, 'f1-score': 0.6823113802674742, 'support': 4168.0} | {'precision': 0.9182389937106918, 'recall': 0.949814126394052, 'f1-score': 0.9337597076290544, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8948343943911677, 'recall': 0.9197382589248737, 'f1-score': 0.9071154317457725, 'support': 12073.0} | 0.9145 | {'precision': 0.8831512634703823, 'recall': 0.8795761961377929, 'f1-score': 0.8807966299105753, 'support': 29705.0} | {'precision': 0.9119809439797892, 'recall': 0.914458845312237, 'f1-score': 0.9128742410785817, 'support': 29705.0} |
104
- | 0.0026 | 32.0 | 2592 | 0.7193 | {'precision': 0.7251544076361595, 'recall': 0.619721689059501, 'f1-score': 0.6683053040103493, 'support': 4168.0} | {'precision': 0.9136021267168808, 'recall': 0.95817843866171, 'f1-score': 0.9353594919482876, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.886909495784953, 'recall': 0.9237140727242608, 'f1-score': 0.904937720615085, 'support': 12073.0} | 0.9126 | {'precision': 0.8814165075344984, 'recall': 0.875403550111368, 'f1-score': 0.8771506291434306, 'support': 29705.0} | {'precision': 0.9092130513494017, 'recall': 0.9126073051674802, 'f1-score': 0.9101398160166225, 'support': 29705.0} |
105
- | 0.0026 | 33.0 | 2673 | 0.6994 | {'precision': 0.6801324503311258, 'recall': 0.7392034548944337, 'f1-score': 0.7084387215451827, 'support': 4168.0} | {'precision': 0.9304029304029304, 'recall': 0.9442379182156134, 'f1-score': 0.937269372693727, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9178868053771727, 'recall': 0.8879317485297772, 'f1-score': 0.9026608285618052, 'support': 12073.0} | 0.9138 | {'precision': 0.8821055465278073, 'recall': 0.8928432804099561, 'f1-score': 0.8870922307001787, 'support': 29705.0} | {'precision': 0.9167031328236271, 'recall': 0.9138192223531392, 'f1-score': 0.9149840250686382, 'support': 29705.0} |
106
- | 0.0026 | 34.0 | 2754 | 0.7248 | {'precision': 0.6961510877360746, 'recall': 0.6986564299424184, 'f1-score': 0.6974015088013411, 'support': 4168.0} | {'precision': 0.92686230248307, 'recall': 0.953996282527881, 'f1-score': 0.9402335699564919, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9066277615673197, 'recall': 0.9007703139236313, 'f1-score': 0.9036895462855244, 'support': 12073.0} | 0.9141 | {'precision': 0.882410287946616, 'recall': 0.8883557565984826, 'f1-score': 0.8853311562608394, 'support': 29705.0} | {'precision': 0.9141182418458097, 'recall': 0.9140548729170174, 'f1-score': 0.9140682047983671, 'support': 29705.0} |
107
- | 0.0026 | 35.0 | 2835 | 0.7356 | {'precision': 0.7119196988707653, 'recall': 0.680662188099808, 'f1-score': 0.6959401447320005, 'support': 4168.0} | {'precision': 0.9223867205024675, 'recall': 0.9553903345724907, 'f1-score': 0.9385984934946359, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9029397273772376, 'recall': 0.9107926778762528, 'f1-score': 0.9068492020947589, 'support': 12073.0} | 0.9157 | {'precision': 0.8842894382168318, 'recall': 0.8867113001371378, 'f1-score': 0.885335910356592, 'support': 29705.0} | {'precision': 0.914473958742095, 'recall': 0.9157044268641643, 'f1-score': 0.9150120491578154, 'support': 29705.0} |
108
- | 0.0026 | 36.0 | 2916 | 0.7340 | {'precision': 0.6965634901291737, 'recall': 0.685700575815739, 'f1-score': 0.6910893483254744, 'support': 4168.0} | {'precision': 0.8989943156974202, 'recall': 0.9553903345724907, 'f1-score': 0.9263347600810993, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9079396817462301, 'recall': 0.9026753913691709, 'f1-score': 0.9052998837016115, 'support': 12073.0} | 0.9131 | {'precision': 0.8758743718932059, 'recall': 0.8859415754393501, 'f1-score': 0.8806809980270462, 'support': 29705.0} | {'precision': 0.9126903946124048, 'recall': 0.9131122706615048, 'f1-score': 0.912830106158716, 'support': 29705.0} |
109
- | 0.0026 | 37.0 | 2997 | 0.7739 | {'precision': 0.6693262411347518, 'recall': 0.7245681381957774, 'f1-score': 0.6958525345622121, 'support': 4168.0} | {'precision': 0.9029424681598595, 'recall': 0.9553903345724907, 'f1-score': 0.9284262813276133, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.917873147190624, 'recall': 0.8822165161931583, 'f1-score': 0.8996916839126579, 'support': 12073.0} | 0.9103 | {'precision': 0.8725354641213088, 'recall': 0.8905437472403566, 'f1-score': 0.8809926249506208, 'support': 29705.0} | {'precision': 0.9131919363932695, 'recall': 0.9102507995286989, 'f1-score': 0.9113706251927232, 'support': 29705.0} |
110
- | 0.0015 | 38.0 | 3078 | 0.7573 | {'precision': 0.6993977481015973, 'recall': 0.6408349328214972, 'f1-score': 0.6688368598973332, 'support': 4168.0} | {'precision': 0.9250814332247557, 'recall': 0.9237918215613383, 'f1-score': 0.9244361776331085, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8903822937625755, 'recall': 0.9163422513045639, 'f1-score': 0.9031757694505674, 'support': 12073.0} | 0.9101 | {'precision': 0.8787153687722321, 'recall': 0.8702422514218499, 'f1-score': 0.8741122017452523, 'support': 29705.0} | {'precision': 0.9078421306508232, 'recall': 0.9100824776973574, 'f1-score': 0.9087069433056804, 'support': 29705.0} |
111
- | 0.0015 | 39.0 | 3159 | 0.7572 | {'precision': 0.7304557802595835, 'recall': 0.5806142034548945, 'f1-score': 0.6469723299024195, 'support': 4168.0} | {'precision': 0.9357581483230987, 'recall': 0.9205390334572491, 'f1-score': 0.9280862028578122, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8742575021214225, 'recall': 0.9387062039261161, 'f1-score': 0.9053363157053842, 'support': 12073.0} | 0.9105 | {'precision': 0.8851178576760261, 'recall': 0.859964860209565, 'f1-score': 0.870098712116404, 'support': 29705.0} | {'precision': 0.9064198636736301, 'recall': 0.910486450092577, 'f1-score': 0.9067816030666352, 'support': 29705.0} |
112
- | 0.0015 | 40.0 | 3240 | 0.7419 | {'precision': 0.7146529562982005, 'recall': 0.6669865642994242, 'f1-score': 0.6899975179945396, 'support': 4168.0} | {'precision': 0.9298978644382544, 'recall': 0.9307620817843866, 'f1-score': 0.9303297724105899, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8984533160579804, 'recall': 0.9189927938374887, 'f1-score': 0.9086069936942102, 'support': 12073.0} | 0.9153 | {'precision': 0.8857510341986088, 'recall': 0.8791853599803248, 'f1-score': 0.8822335710248349, 'support': 29705.0} | {'precision': 0.913611870422152, 'recall': 0.9153341188352129, 'f1-score': 0.9143104379767389, 'support': 29705.0} |
113
- | 0.0015 | 41.0 | 3321 | 0.7466 | {'precision': 0.6777356808558057, 'recall': 0.7296065259117083, 'f1-score': 0.7027151935297515, 'support': 4168.0} | {'precision': 0.925756186984418, 'recall': 0.9386617100371747, 'f1-score': 0.9321642824180896, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.9155578300921188, 'recall': 0.8890913608879317, 'f1-score': 0.902130520653864, 'support': 12073.0} | 0.9125 | {'precision': 0.8797624244830856, 'recall': 0.8893398992092036, 'f1-score': 0.8842524991504263, 'support': 29705.0} | {'precision': 0.9150836328867065, 'recall': 0.9125399764349437, 'f1-score': 0.9135955643241823, 'support': 29705.0} |
114
- | 0.0015 | 42.0 | 3402 | 0.7536 | {'precision': 0.6951059931954986, 'recall': 0.6372360844529751, 'f1-score': 0.6649142571035175, 'support': 4168.0} | {'precision': 0.9253592953175707, 'recall': 0.9275092936802974, 'f1-score': 0.9264330471106985, 'support': 2152.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11312.0} | {'precision': 0.8890052356020942, 'recall': 0.9141886854965626, 'f1-score': 0.9014211042143091, 'support': 12073.0} | 0.9090 | {'precision': 0.8773676310287909, 'recall': 0.8697335159074588, 'f1-score': 0.8731921021071313, 'support': 29705.0} | {'precision': 0.9067003936235091, 'recall': 0.9089715536105033, 'f1-score': 0.9075880670651082, 'support': 29705.0} |
115
- | 0.0015 | 43.0 | 3483 | 0.7570 | {'precision': 0.6914354644149577, 'recall': 0.6876199616122841, 'f1-score': 0.6895224347407675, 'support': 4168.0} | {'precision': 0.9220369535826949, 'recall': 0.9507434944237918, 'f1-score': 0.9361702127659575, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9040571998669771, 'recall': 0.9006874844694773, 'f1-score': 0.9023691962989088, 'support': 12073.0} | 0.9122 | {'precision': 0.8793603059953716, 'recall': 0.8847627351263884, 'f1-score': 0.8820044112276516, 'support': 29705.0} | {'precision': 0.9120285878532032, 'recall': 0.9122369971385289, 'f1-score': 0.9121148336942613, 'support': 29705.0} |
116
- | 0.0013 | 44.0 | 3564 | 0.7517 | {'precision': 0.6876495931067497, 'recall': 0.689299424184261, 'f1-score': 0.6884735202492213, 'support': 4168.0} | {'precision': 0.9240969364426155, 'recall': 0.9391263940520446, 'f1-score': 0.9315510486287162, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9038829300740001, 'recall': 0.9004389961070156, 'f1-score': 0.9021576763485477, 'support': 12073.0} | 0.9115 | {'precision': 0.8788852664350555, 'recall': 0.8822162035858303, 'f1-score': 0.8805345115828644, 'support': 29705.0} | {'precision': 0.9115757890749278, 'recall': 0.9115300454468944, 'f1-score': 0.9115470505875514, 'support': 29705.0} |
117
- | 0.0013 | 45.0 | 3645 | 0.7445 | {'precision': 0.713818479149632, 'recall': 0.628358925143954, 'f1-score': 0.6683679979584024, 'support': 4168.0} | {'precision': 0.9268518518518518, 'recall': 0.9302973977695167, 'f1-score': 0.9285714285714285, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8871288704927167, 'recall': 0.9231342665451835, 'f1-score': 0.9047735021919143, 'support': 12073.0} | 0.9116 | {'precision': 0.8819277019027643, 'recall': 0.8704476473646635, 'f1-score': 0.8754171824566794, 'support': 29705.0} | {'precision': 0.9086378572002458, 'recall': 0.9115637098131628, 'f1-score': 0.9095732719689872, 'support': 29705.0} |
118
- | 0.0013 | 46.0 | 3726 | 0.7457 | {'precision': 0.7061894108873975, 'recall': 0.6816218809980806, 'f1-score': 0.693688194359663, 'support': 4168.0} | {'precision': 0.9259936043855642, 'recall': 0.9419144981412639, 'f1-score': 0.9338862013360976, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9022167487684729, 'recall': 0.9102128716971755, 'f1-score': 0.9061971714839401, 'support': 12073.0} | 0.9146 | {'precision': 0.8835778425395728, 'recall': 0.88343731270913, 'f1-score': 0.8834318420711683, 'support': 29705.0} | {'precision': 0.9136373875607494, 'recall': 0.9146271671435785, 'f1-score': 0.9140896809557788, 'support': 29705.0} |
119
- | 0.0013 | 47.0 | 3807 | 0.7466 | {'precision': 0.717948717948718, 'recall': 0.6583493282149712, 'f1-score': 0.6868585732165207, 'support': 4168.0} | {'precision': 0.9279816513761467, 'recall': 0.9400557620817844, 'f1-score': 0.9339796860572483, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.8955609362389023, 'recall': 0.9190756232916425, 'f1-score': 0.9071659240485632, 'support': 12073.0} | 0.9148 | {'precision': 0.885350727920156, 'recall': 0.8793701783970995, 'f1-score': 0.8819899961068263, 'support': 29705.0} | {'precision': 0.9127262764442979, 'recall': 0.9148291533411883, 'f1-score': 0.913531898357159, 'support': 29705.0} |
120
- | 0.0013 | 48.0 | 3888 | 0.7467 | {'precision': 0.7121250315099571, 'recall': 0.6777831094049904, 'f1-score': 0.6945298094652735, 'support': 4168.0} | {'precision': 0.9271978021978022, 'recall': 0.9409851301115242, 'f1-score': 0.9340405904059041, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9010701740053917, 'recall': 0.9136088793174852, 'f1-score': 0.9072962079460393, 'support': 12073.0} | 0.9154 | {'precision': 0.8850761534575019, 'recall': 0.8830942797085, 'f1-score': 0.8839556022305474, 'support': 29705.0} | {'precision': 0.914091469477332, 'recall': 0.9154014475677495, 'f1-score': 0.9146656366617318, 'support': 29705.0} |
121
- | 0.0013 | 49.0 | 3969 | 0.7450 | {'precision': 0.695160125210691, 'recall': 0.692658349328215, 'f1-score': 0.6939069823338541, 'support': 4168.0} | {'precision': 0.9298569450853715, 'recall': 0.9363382899628253, 'f1-score': 0.9330863625839315, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9042412193505633, 'recall': 0.904166321543941, 'f1-score': 0.9042037688962519, 'support': 12073.0} | 0.9133 | {'precision': 0.8822924739408706, 'recall': 0.8832907402087453, 'f1-score': 0.8827882287297525, 'support': 29705.0} | {'precision': 0.9131925223805796, 'recall': 0.9133142568591146, 'f1-score': 0.9132522564764188, 'support': 29705.0} |
122
- | 0.0007 | 50.0 | 4050 | 0.7436 | {'precision': 0.700735294117647, 'recall': 0.6859404990403071, 'f1-score': 0.6932589718719689, 'support': 4168.0} | {'precision': 0.9293954776188279, 'recall': 0.9358736059479554, 'f1-score': 0.932623292428803, 'support': 2152.0} | {'precision': 0.9999116061168567, 'recall': 1.0, 'f1-score': 0.9999558011049724, 'support': 11312.0} | {'precision': 0.9025936599423631, 'recall': 0.9079764764350203, 'f1-score': 0.9052770666446445, 'support': 12073.0} | 0.9139 | {'precision': 0.8831590094489237, 'recall': 0.8824476453558208, 'f1-score': 0.8827787830125972, 'support': 29705.0} | {'precision': 0.9132717427569804, 'recall': 0.9138865510856758, 'f1-score': 0.9135640049745629, 'support': 29705.0} |
123
 
124
 
125
  ### Framework versions
 
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: sep_tok
20
+ split: train[0%:20%]
21
  args: sep_tok
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9097784810126582
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6673
36
+ - Claim: {'precision': 0.6793010091065715, 'recall': 0.6475832942280619, 'f1-score': 0.663063063063063, 'support': 4262.0}
37
+ - Majorclaim: {'precision': 0.9517884914463453, 'recall': 0.8480369515011548, 'f1-score': 0.8969223253541768, 'support': 2165.0}
38
+ - O: {'precision': 0.9979434024350116, 'recall': 0.9997527608373167, 'f1-score': 0.9988472622478387, 'support': 12134.0}
39
+ - Premise: {'precision': 0.8936961046684508, 'recall': 0.922003221105913, 'f1-score': 0.9076290060775357, 'support': 13039.0}
40
+ - Accuracy: 0.9098
41
+ - Macro avg: {'precision': 0.8806822519140949, 'recall': 0.8543440569181115, 'f1-score': 0.8666154141856536, 'support': 31600.0}
42
+ - Weighted avg: {'precision': 0.908789611984554, 'recall': 0.9097784810126582, 'f1-score': 0.9089366740356591, 'support': 31600.0}
43
 
44
  ## Model description
45
 
 
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 20
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 81 | 0.3209 | {'precision': 0.5136306192453511, 'recall': 0.6675269826372595, 'f1-score': 0.580553004795429, 'support': 4262.0} | {'precision': 0.7583745194947831, 'recall': 0.6378752886836028, 'f1-score': 0.6929252383341696, 'support': 2165.0} | {'precision': 0.9967861557478368, 'recall': 0.996868303939344, 'f1-score': 0.9968272281511393, 'support': 12134.0} | {'precision': 0.9107806691449815, 'recall': 0.8455403021704119, 'f1-score': 0.8769487750556793, 'support': 13039.0} | 0.8654 | {'precision': 0.7948929909082382, 'recall': 0.7869527193576545, 'f1-score': 0.7868135615841043, 'support': 31600.0} | {'precision': 0.8797989523023909, 'recall': 0.8654113924050633, 'f1-score': 0.8703967313850799, 'support': 31600.0} |
74
+ | No log | 2.0 | 162 | 0.2567 | {'precision': 0.6369094231271208, 'recall': 0.5725011731581418, 'f1-score': 0.6029902384776968, 'support': 4262.0} | {'precision': 0.8129562043795621, 'recall': 0.8230946882217091, 'f1-score': 0.8179940325912326, 'support': 2165.0} | {'precision': 0.9972866304884065, 'recall': 0.9995879347288611, 'f1-score': 0.9984359565360553, 'support': 12134.0} | {'precision': 0.8891539321654864, 'recall': 0.9147940793005599, 'f1-score': 0.9017917895214335, 'support': 13039.0} | 0.8949 | {'precision': 0.8340765475401439, 'recall': 0.8274944688523179, 'f1-score': 0.8303030042816045, 'support': 31600.0} | {'precision': 0.8914339316361279, 'recall': 0.8949050632911393, 'f1-score': 0.8928603328205832, 'support': 31600.0} |
75
+ | No log | 3.0 | 243 | 0.2675 | {'precision': 0.6579241071428571, 'recall': 0.5532613796339747, 'f1-score': 0.6010706092276319, 'support': 4262.0} | {'precision': 0.8917869034406215, 'recall': 0.7422632794457275, 'f1-score': 0.8101840181497353, 'support': 2165.0} | {'precision': 0.9967118783394986, 'recall': 0.9992582825119499, 'f1-score': 0.997983456109305, 'support': 12134.0} | {'precision': 0.8758630507509432, 'recall': 0.9437073395199018, 'f1-score': 0.9085203780271707, 'support': 13039.0} | 0.8986 | {'precision': 0.8555714849184801, 'recall': 0.8096225702778885, 'f1-score': 0.8294396153784607, 'support': 31600.0} | {'precision': 0.8939642861109123, 'recall': 0.8985759493670886, 'f1-score': 0.894668981055346, 'support': 31600.0} |
76
+ | No log | 4.0 | 324 | 0.2528 | {'precision': 0.6399294843543412, 'recall': 0.681370248709526, 'f1-score': 0.66, 'support': 4262.0} | {'precision': 0.8895348837209303, 'recall': 0.8480369515011548, 'f1-score': 0.8682903759754079, 'support': 2165.0} | {'precision': 0.9971224204554797, 'recall': 0.9995055216746332, 'f1-score': 0.9983125488743466, 'support': 12134.0} | {'precision': 0.9082976236852357, 'recall': 0.8940869698596519, 'f1-score': 0.9011362757980985, 'support': 13039.0} | 0.9027 | {'precision': 0.8587211030539967, 'recall': 0.8557499229362415, 'f1-score': 0.8569348001619632, 'support': 31600.0} | {'precision': 0.9049240079307782, 'recall': 0.9027215189873418, 'f1-score': 0.9036775010177053, 'support': 31600.0} |
77
+ | No log | 5.0 | 405 | 0.2990 | {'precision': 0.6126, 'recall': 0.7186766776161426, 'f1-score': 0.6614122219822932, 'support': 4262.0} | {'precision': 0.947565543071161, 'recall': 0.7011547344110854, 'f1-score': 0.805946376426865, 'support': 2165.0} | {'precision': 0.9975324888962, 'recall': 0.9995055216746332, 'f1-score': 0.998518030627367, 'support': 12134.0} | {'precision': 0.9121495327102803, 'recall': 0.8982283917478334, 'f1-score': 0.9051354379999227, 'support': 13039.0} | 0.8994 | {'precision': 0.8674618911694103, 'recall': 0.8293913313624237, 'f1-score': 0.842753016759112, 'support': 31600.0} | {'precision': 0.9069606828488892, 'recall': 0.8993987341772152, 'f1-score': 0.9013256821128531, 'support': 31600.0} |
78
+ | No log | 6.0 | 486 | 0.3114 | {'precision': 0.6412139011257953, 'recall': 0.6147348662599719, 'f1-score': 0.6276952563488261, 'support': 4262.0} | {'precision': 0.8991759573436743, 'recall': 0.8568129330254042, 'f1-score': 0.8774834437086093, 'support': 2165.0} | {'precision': 0.99860036225918, 'recall': 0.9995879347288611, 'f1-score': 0.9990939044481055, 'support': 12134.0} | {'precision': 0.8901916572717024, 'recall': 0.9083518674744996, 'f1-score': 0.8991800789553598, 'support': 13039.0} | 0.9003 | {'precision': 0.8572954695000881, 'recall': 0.8448719003721842, 'f1-score': 0.8508631708652252, 'support': 31600.0} | {'precision': 0.8988542850970194, 'recall': 0.900253164556962, 'f1-score': 0.8994431431727875, 'support': 31600.0} |
79
+ | 0.2362 | 7.0 | 567 | 0.3888 | {'precision': 0.6953872932985204, 'recall': 0.5624120131393712, 'f1-score': 0.6218705409261902, 'support': 4262.0} | {'precision': 0.9364837398373984, 'recall': 0.851270207852194, 'f1-score': 0.8918461166223083, 'support': 2165.0} | {'precision': 0.9982714626718249, 'recall': 0.9995055216746332, 'f1-score': 0.9988881110241733, 'support': 12134.0} | {'precision': 0.8734682245654033, 'recall': 0.9402561546130839, 'f1-score': 0.9056325023084026, 'support': 13039.0} | 0.9059 | {'precision': 0.8759026800932868, 'recall': 0.8383609743198206, 'f1-score': 0.8545593177202686, 'support': 31600.0} | {'precision': 0.9016900648403317, 'recall': 0.9059493670886076, 'f1-score': 0.9022249881228259, 'support': 31600.0} |
80
+ | 0.2362 | 8.0 | 648 | 0.4088 | {'precision': 0.6334106728538283, 'recall': 0.7045987799155327, 'f1-score': 0.6671109630123293, 'support': 4262.0} | {'precision': 0.9212598425196851, 'recall': 0.8646651270207852, 'f1-score': 0.8920657612580415, 'support': 2165.0} | {'precision': 0.9982713203819559, 'recall': 0.9994231086204055, 'f1-score': 0.998846882464377, 'support': 12134.0} | {'precision': 0.9115860872308542, 'recall': 0.8864176700667229, 'f1-score': 0.8988257251730306, 'support': 13039.0} | 0.9038 | {'precision': 0.8661319807465809, 'recall': 0.8637761714058616, 'f1-score': 0.8642123329769446, 'support': 31600.0} | {'precision': 0.9080164253061992, 'recall': 0.9037974683544304, 'f1-score': 0.9055172784758262, 'support': 31600.0} |
81
+ | 0.2362 | 9.0 | 729 | 0.4774 | {'precision': 0.6054054054054054, 'recall': 0.7095260441107462, 'f1-score': 0.6533434157934537, 'support': 4262.0} | {'precision': 0.882988298829883, 'recall': 0.9062355658198614, 'f1-score': 0.8944609072258947, 'support': 2165.0} | {'precision': 0.9976968001974171, 'recall': 0.9995879347288611, 'f1-score': 0.9986414721501792, 'support': 12134.0} | {'precision': 0.9177163422214952, 'recall': 0.8604954367666232, 'f1-score': 0.8881852364931724, 'support': 13039.0} | 0.8967 | {'precision': 0.8509517116635501, 'recall': 0.868961245356523, 'f1-score': 0.8586577579156749, 'support': 31600.0} | {'precision': 0.903926071665382, 'recall': 0.8966772151898734, 'f1-score': 0.899355076707611, 'support': 31600.0} |
82
+ | 0.2362 | 10.0 | 810 | 0.5144 | {'precision': 0.6497005988023952, 'recall': 0.6109807602064758, 'f1-score': 0.6297460701330109, 'support': 4262.0} | {'precision': 0.9827904118008605, 'recall': 0.7385681293302541, 'f1-score': 0.8433544303797468, 'support': 2165.0} | {'precision': 0.9987648221343873, 'recall': 0.9995879347288611, 'f1-score': 0.9991762089134196, 'support': 12134.0} | {'precision': 0.8794587945879458, 'recall': 0.9322033898305084, 'f1-score': 0.9050632911392404, 'support': 13039.0} | 0.9015 | {'precision': 0.8776786568313971, 'recall': 0.8203350535240248, 'f1-score': 0.8443350001413544, 'support': 31600.0} | {'precision': 0.901362049622011, 'recall': 0.901487341772152, 'f1-score': 0.8998406476202226, 'support': 31600.0} |
83
+ | 0.2362 | 11.0 | 891 | 0.5589 | {'precision': 0.6431628745212886, 'recall': 0.6698732989206945, 'f1-score': 0.6562464084587979, 'support': 4262.0} | {'precision': 0.9496362618914381, 'recall': 0.7838337182448037, 'f1-score': 0.8588056680161943, 'support': 2165.0} | {'precision': 0.9974508675273415, 'recall': 0.9996703477830888, 'f1-score': 0.9985593743568636, 'support': 12134.0} | {'precision': 0.8977522137289033, 'recall': 0.9097323414372268, 'f1-score': 0.9037025750419017, 'support': 13039.0} | 0.9033 | {'precision': 0.8720005544172429, 'recall': 0.8407774265964535, 'f1-score': 0.8543285064684394, 'support': 31600.0} | {'precision': 0.9052526145440706, 'recall': 0.9032911392405063, 'f1-score': 0.9036751198899997, 'support': 31600.0} |
84
+ | 0.2362 | 12.0 | 972 | 0.6348 | {'precision': 0.668590065228299, 'recall': 0.6252932895354294, 'f1-score': 0.6462172647914647, 'support': 4262.0} | {'precision': 0.9247202441505595, 'recall': 0.8397228637413395, 'f1-score': 0.8801742919389979, 'support': 2165.0} | {'precision': 0.99777924000658, 'recall': 0.9997527608373167, 'f1-score': 0.9987650255228059, 'support': 12134.0} | {'precision': 0.8901408450704226, 'recall': 0.920929519134903, 'f1-score': 0.9052734743111314, 'support': 13039.0} | 0.9058 | {'precision': 0.8703075986139653, 'recall': 0.8464246083122471, 'f1-score': 0.8576075141410999, 'support': 31600.0} | {'precision': 0.9039604418893055, 'recall': 0.905759493670886, 'f1-score': 0.9045136384754975, 'support': 31600.0} |
85
+ | 0.0312 | 13.0 | 1053 | 0.5935 | {'precision': 0.6740142052412442, 'recall': 0.6457062412013139, 'f1-score': 0.6595566207309765, 'support': 4262.0} | {'precision': 0.9273797841020608, 'recall': 0.8729792147806005, 'f1-score': 0.8993576017130621, 'support': 2165.0} | {'precision': 0.998025666337611, 'recall': 0.9998351738915444, 'f1-score': 0.9989296006587073, 'support': 12134.0} | {'precision': 0.8968700743075884, 'recall': 0.9164046322570749, 'f1-score': 0.9065321295804567, 'support': 13039.0} | 0.9090 | {'precision': 0.8740724324971261, 'recall': 0.8587313155326335, 'f1-score': 0.8660939881708007, 'support': 31600.0} | {'precision': 0.9077455097960874, 'recall': 0.9089556962025317, 'f1-score': 0.9082096119384979, 'support': 31600.0} |
86
+ | 0.0312 | 14.0 | 1134 | 0.6126 | {'precision': 0.6902082834570266, 'recall': 0.6764429845143125, 'f1-score': 0.6832563099893353, 'support': 4262.0} | {'precision': 0.9273270283723245, 'recall': 0.8605080831408776, 'f1-score': 0.892668902731193, 'support': 2165.0} | {'precision': 0.9987641097470544, 'recall': 0.9990110433492665, 'f1-score': 0.9988875612871329, 'support': 12134.0} | {'precision': 0.9023875875574301, 'recall': 0.9188588081908122, 'f1-score': 0.9105487156102752, 'support': 13039.0} | 0.9129 | {'precision': 0.879671752283459, 'recall': 0.8637052297988173, 'f1-score': 0.8713403724044841, 'support': 31600.0} | {'precision': 0.9124862715934182, 'recall': 0.9129430379746836, 'f1-score': 0.9125890170597477, 'support': 31600.0} |
87
+ | 0.0312 | 15.0 | 1215 | 0.6346 | {'precision': 0.6470333477695972, 'recall': 0.7010793054903801, 'f1-score': 0.672972972972973, 'support': 4262.0} | {'precision': 0.9200581395348837, 'recall': 0.877136258660508, 'f1-score': 0.8980846535824072, 'support': 2165.0} | {'precision': 0.9985185185185185, 'recall': 0.9998351738915444, 'f1-score': 0.9991764124526437, 'support': 12134.0} | {'precision': 0.9112625313283208, 'recall': 0.8923230309072782, 'f1-score': 0.9016933390165459, 'support': 13039.0} | 0.9068 | {'precision': 0.86921813428783, 'recall': 0.8675934422374277, 'f1-score': 0.8679818445061424, 'support': 31600.0} | {'precision': 0.9097328433538203, 'recall': 0.9067721518987342, 'f1-score': 0.9080300671504381, 'support': 31600.0} |
88
+ | 0.0312 | 16.0 | 1296 | 0.6317 | {'precision': 0.6643092880716643, 'recall': 0.661191928671985, 'f1-score': 0.6627469426152399, 'support': 4262.0} | {'precision': 0.9574241617881852, 'recall': 0.8309468822170901, 'f1-score': 0.8897131552917903, 'support': 2165.0} | {'precision': 0.9984362139917695, 'recall': 0.9997527608373167, 'f1-score': 0.999094053697908, 'support': 12134.0} | {'precision': 0.8954160102033161, 'recall': 0.9153309302860649, 'f1-score': 0.9052639563106797, 'support': 13039.0} | 0.9077 | {'precision': 0.8788964185137338, 'recall': 0.8518056255031142, 'f1-score': 0.8642045269789045, 'support': 31600.0} | {'precision': 0.9080526542294312, 'recall': 0.9076898734177216, 'f1-score': 0.9075190007765268, 'support': 31600.0} |
89
+ | 0.0312 | 17.0 | 1377 | 0.6472 | {'precision': 0.6666666666666666, 'recall': 0.684185828249648, 'f1-score': 0.6753126447429365, 'support': 4262.0} | {'precision': 0.9678100263852243, 'recall': 0.8471131639722864, 'f1-score': 0.903448275862069, 'support': 2165.0} | {'precision': 0.998025341451374, 'recall': 0.9996703477830888, 'f1-score': 0.9988471673254282, 'support': 12134.0} | {'precision': 0.9003566820975943, 'recall': 0.9098857274330854, 'f1-score': 0.9050961245041197, 'support': 13039.0} | 0.9096 | {'precision': 0.8832146791502148, 'recall': 0.8602137668595271, 'f1-score': 0.8706760531086384, 'support': 31600.0} | {'precision': 0.9109630478322421, 'recall': 0.909620253164557, 'f1-score': 0.9099907564832829, 'support': 31600.0} |
90
+ | 0.0312 | 18.0 | 1458 | 0.6553 | {'precision': 0.672607421875, 'recall': 0.6464101360863445, 'f1-score': 0.6592486240727448, 'support': 4262.0} | {'precision': 0.9460732984293194, 'recall': 0.8346420323325635, 'f1-score': 0.8868711656441718, 'support': 2165.0} | {'precision': 0.9978613144690301, 'recall': 0.9997527608373167, 'f1-score': 0.9988061421925816, 'support': 12134.0} | {'precision': 0.8936518568132767, 'recall': 0.920929519134903, 'f1-score': 0.9070856624867805, 'support': 13039.0} | 0.9083 | {'precision': 0.8775484728966565, 'recall': 0.850433612097782, 'f1-score': 0.8630028985990696, 'support': 31600.0} | {'precision': 0.9074454833508309, 'recall': 0.9082594936708861, 'f1-score': 0.9074935883527716, 'support': 31600.0} |
91
+ | 0.0058 | 19.0 | 1539 | 0.6835 | {'precision': 0.687516356974614, 'recall': 0.6163772876583763, 'f1-score': 0.6500061858220958, 'support': 4262.0} | {'precision': 0.9501039501039501, 'recall': 0.8443418013856813, 'f1-score': 0.8941061384201515, 'support': 2165.0} | {'precision': 0.9978613144690301, 'recall': 0.9997527608373167, 'f1-score': 0.9988061421925816, 'support': 12134.0} | {'precision': 0.8858227478464009, 'recall': 0.9305928368739934, 'f1-score': 0.9076560571492688, 'support': 13039.0} | 0.9089 | {'precision': 0.8803260923484988, 'recall': 0.8477661716888419, 'f1-score': 0.8626436308960244, 'support': 31600.0} | {'precision': 0.9065019545676358, 'recall': 0.9088607594936708, 'f1-score': 0.9069780763350475, 'support': 31600.0} |
92
+ | 0.0058 | 20.0 | 1620 | 0.6673 | {'precision': 0.6793010091065715, 'recall': 0.6475832942280619, 'f1-score': 0.663063063063063, 'support': 4262.0} | {'precision': 0.9517884914463453, 'recall': 0.8480369515011548, 'f1-score': 0.8969223253541768, 'support': 2165.0} | {'precision': 0.9979434024350116, 'recall': 0.9997527608373167, 'f1-score': 0.9988472622478387, 'support': 12134.0} | {'precision': 0.8936961046684508, 'recall': 0.922003221105913, 'f1-score': 0.9076290060775357, 'support': 13039.0} | 0.9098 | {'precision': 0.8806822519140949, 'recall': 0.8543440569181115, 'f1-score': 0.8666154141856536, 'support': 31600.0} | {'precision': 0.908789611984554, 'recall': 0.9097784810126582, 'f1-score': 0.9089366740356591, 'support': 31600.0} |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  ### Framework versions
meta_data/README_s42_e20.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-sep_tok
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: sep_tok
20
+ split: train[0%:20%]
21
+ args: sep_tok
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9097784810126582
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-sep_tok
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6673
36
+ - Claim: {'precision': 0.6793010091065715, 'recall': 0.6475832942280619, 'f1-score': 0.663063063063063, 'support': 4262.0}
37
+ - Majorclaim: {'precision': 0.9517884914463453, 'recall': 0.8480369515011548, 'f1-score': 0.8969223253541768, 'support': 2165.0}
38
+ - O: {'precision': 0.9979434024350116, 'recall': 0.9997527608373167, 'f1-score': 0.9988472622478387, 'support': 12134.0}
39
+ - Premise: {'precision': 0.8936961046684508, 'recall': 0.922003221105913, 'f1-score': 0.9076290060775357, 'support': 13039.0}
40
+ - Accuracy: 0.9098
41
+ - Macro avg: {'precision': 0.8806822519140949, 'recall': 0.8543440569181115, 'f1-score': 0.8666154141856536, 'support': 31600.0}
42
+ - Weighted avg: {'precision': 0.908789611984554, 'recall': 0.9097784810126582, 'f1-score': 0.9089366740356591, 'support': 31600.0}
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 20
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 81 | 0.3209 | {'precision': 0.5136306192453511, 'recall': 0.6675269826372595, 'f1-score': 0.580553004795429, 'support': 4262.0} | {'precision': 0.7583745194947831, 'recall': 0.6378752886836028, 'f1-score': 0.6929252383341696, 'support': 2165.0} | {'precision': 0.9967861557478368, 'recall': 0.996868303939344, 'f1-score': 0.9968272281511393, 'support': 12134.0} | {'precision': 0.9107806691449815, 'recall': 0.8455403021704119, 'f1-score': 0.8769487750556793, 'support': 13039.0} | 0.8654 | {'precision': 0.7948929909082382, 'recall': 0.7869527193576545, 'f1-score': 0.7868135615841043, 'support': 31600.0} | {'precision': 0.8797989523023909, 'recall': 0.8654113924050633, 'f1-score': 0.8703967313850799, 'support': 31600.0} |
74
+ | No log | 2.0 | 162 | 0.2567 | {'precision': 0.6369094231271208, 'recall': 0.5725011731581418, 'f1-score': 0.6029902384776968, 'support': 4262.0} | {'precision': 0.8129562043795621, 'recall': 0.8230946882217091, 'f1-score': 0.8179940325912326, 'support': 2165.0} | {'precision': 0.9972866304884065, 'recall': 0.9995879347288611, 'f1-score': 0.9984359565360553, 'support': 12134.0} | {'precision': 0.8891539321654864, 'recall': 0.9147940793005599, 'f1-score': 0.9017917895214335, 'support': 13039.0} | 0.8949 | {'precision': 0.8340765475401439, 'recall': 0.8274944688523179, 'f1-score': 0.8303030042816045, 'support': 31600.0} | {'precision': 0.8914339316361279, 'recall': 0.8949050632911393, 'f1-score': 0.8928603328205832, 'support': 31600.0} |
75
+ | No log | 3.0 | 243 | 0.2675 | {'precision': 0.6579241071428571, 'recall': 0.5532613796339747, 'f1-score': 0.6010706092276319, 'support': 4262.0} | {'precision': 0.8917869034406215, 'recall': 0.7422632794457275, 'f1-score': 0.8101840181497353, 'support': 2165.0} | {'precision': 0.9967118783394986, 'recall': 0.9992582825119499, 'f1-score': 0.997983456109305, 'support': 12134.0} | {'precision': 0.8758630507509432, 'recall': 0.9437073395199018, 'f1-score': 0.9085203780271707, 'support': 13039.0} | 0.8986 | {'precision': 0.8555714849184801, 'recall': 0.8096225702778885, 'f1-score': 0.8294396153784607, 'support': 31600.0} | {'precision': 0.8939642861109123, 'recall': 0.8985759493670886, 'f1-score': 0.894668981055346, 'support': 31600.0} |
76
+ | No log | 4.0 | 324 | 0.2528 | {'precision': 0.6399294843543412, 'recall': 0.681370248709526, 'f1-score': 0.66, 'support': 4262.0} | {'precision': 0.8895348837209303, 'recall': 0.8480369515011548, 'f1-score': 0.8682903759754079, 'support': 2165.0} | {'precision': 0.9971224204554797, 'recall': 0.9995055216746332, 'f1-score': 0.9983125488743466, 'support': 12134.0} | {'precision': 0.9082976236852357, 'recall': 0.8940869698596519, 'f1-score': 0.9011362757980985, 'support': 13039.0} | 0.9027 | {'precision': 0.8587211030539967, 'recall': 0.8557499229362415, 'f1-score': 0.8569348001619632, 'support': 31600.0} | {'precision': 0.9049240079307782, 'recall': 0.9027215189873418, 'f1-score': 0.9036775010177053, 'support': 31600.0} |
77
+ | No log | 5.0 | 405 | 0.2990 | {'precision': 0.6126, 'recall': 0.7186766776161426, 'f1-score': 0.6614122219822932, 'support': 4262.0} | {'precision': 0.947565543071161, 'recall': 0.7011547344110854, 'f1-score': 0.805946376426865, 'support': 2165.0} | {'precision': 0.9975324888962, 'recall': 0.9995055216746332, 'f1-score': 0.998518030627367, 'support': 12134.0} | {'precision': 0.9121495327102803, 'recall': 0.8982283917478334, 'f1-score': 0.9051354379999227, 'support': 13039.0} | 0.8994 | {'precision': 0.8674618911694103, 'recall': 0.8293913313624237, 'f1-score': 0.842753016759112, 'support': 31600.0} | {'precision': 0.9069606828488892, 'recall': 0.8993987341772152, 'f1-score': 0.9013256821128531, 'support': 31600.0} |
78
+ | No log | 6.0 | 486 | 0.3114 | {'precision': 0.6412139011257953, 'recall': 0.6147348662599719, 'f1-score': 0.6276952563488261, 'support': 4262.0} | {'precision': 0.8991759573436743, 'recall': 0.8568129330254042, 'f1-score': 0.8774834437086093, 'support': 2165.0} | {'precision': 0.99860036225918, 'recall': 0.9995879347288611, 'f1-score': 0.9990939044481055, 'support': 12134.0} | {'precision': 0.8901916572717024, 'recall': 0.9083518674744996, 'f1-score': 0.8991800789553598, 'support': 13039.0} | 0.9003 | {'precision': 0.8572954695000881, 'recall': 0.8448719003721842, 'f1-score': 0.8508631708652252, 'support': 31600.0} | {'precision': 0.8988542850970194, 'recall': 0.900253164556962, 'f1-score': 0.8994431431727875, 'support': 31600.0} |
79
+ | 0.2362 | 7.0 | 567 | 0.3888 | {'precision': 0.6953872932985204, 'recall': 0.5624120131393712, 'f1-score': 0.6218705409261902, 'support': 4262.0} | {'precision': 0.9364837398373984, 'recall': 0.851270207852194, 'f1-score': 0.8918461166223083, 'support': 2165.0} | {'precision': 0.9982714626718249, 'recall': 0.9995055216746332, 'f1-score': 0.9988881110241733, 'support': 12134.0} | {'precision': 0.8734682245654033, 'recall': 0.9402561546130839, 'f1-score': 0.9056325023084026, 'support': 13039.0} | 0.9059 | {'precision': 0.8759026800932868, 'recall': 0.8383609743198206, 'f1-score': 0.8545593177202686, 'support': 31600.0} | {'precision': 0.9016900648403317, 'recall': 0.9059493670886076, 'f1-score': 0.9022249881228259, 'support': 31600.0} |
80
+ | 0.2362 | 8.0 | 648 | 0.4088 | {'precision': 0.6334106728538283, 'recall': 0.7045987799155327, 'f1-score': 0.6671109630123293, 'support': 4262.0} | {'precision': 0.9212598425196851, 'recall': 0.8646651270207852, 'f1-score': 0.8920657612580415, 'support': 2165.0} | {'precision': 0.9982713203819559, 'recall': 0.9994231086204055, 'f1-score': 0.998846882464377, 'support': 12134.0} | {'precision': 0.9115860872308542, 'recall': 0.8864176700667229, 'f1-score': 0.8988257251730306, 'support': 13039.0} | 0.9038 | {'precision': 0.8661319807465809, 'recall': 0.8637761714058616, 'f1-score': 0.8642123329769446, 'support': 31600.0} | {'precision': 0.9080164253061992, 'recall': 0.9037974683544304, 'f1-score': 0.9055172784758262, 'support': 31600.0} |
81
+ | 0.2362 | 9.0 | 729 | 0.4774 | {'precision': 0.6054054054054054, 'recall': 0.7095260441107462, 'f1-score': 0.6533434157934537, 'support': 4262.0} | {'precision': 0.882988298829883, 'recall': 0.9062355658198614, 'f1-score': 0.8944609072258947, 'support': 2165.0} | {'precision': 0.9976968001974171, 'recall': 0.9995879347288611, 'f1-score': 0.9986414721501792, 'support': 12134.0} | {'precision': 0.9177163422214952, 'recall': 0.8604954367666232, 'f1-score': 0.8881852364931724, 'support': 13039.0} | 0.8967 | {'precision': 0.8509517116635501, 'recall': 0.868961245356523, 'f1-score': 0.8586577579156749, 'support': 31600.0} | {'precision': 0.903926071665382, 'recall': 0.8966772151898734, 'f1-score': 0.899355076707611, 'support': 31600.0} |
82
+ | 0.2362 | 10.0 | 810 | 0.5144 | {'precision': 0.6497005988023952, 'recall': 0.6109807602064758, 'f1-score': 0.6297460701330109, 'support': 4262.0} | {'precision': 0.9827904118008605, 'recall': 0.7385681293302541, 'f1-score': 0.8433544303797468, 'support': 2165.0} | {'precision': 0.9987648221343873, 'recall': 0.9995879347288611, 'f1-score': 0.9991762089134196, 'support': 12134.0} | {'precision': 0.8794587945879458, 'recall': 0.9322033898305084, 'f1-score': 0.9050632911392404, 'support': 13039.0} | 0.9015 | {'precision': 0.8776786568313971, 'recall': 0.8203350535240248, 'f1-score': 0.8443350001413544, 'support': 31600.0} | {'precision': 0.901362049622011, 'recall': 0.901487341772152, 'f1-score': 0.8998406476202226, 'support': 31600.0} |
83
+ | 0.2362 | 11.0 | 891 | 0.5589 | {'precision': 0.6431628745212886, 'recall': 0.6698732989206945, 'f1-score': 0.6562464084587979, 'support': 4262.0} | {'precision': 0.9496362618914381, 'recall': 0.7838337182448037, 'f1-score': 0.8588056680161943, 'support': 2165.0} | {'precision': 0.9974508675273415, 'recall': 0.9996703477830888, 'f1-score': 0.9985593743568636, 'support': 12134.0} | {'precision': 0.8977522137289033, 'recall': 0.9097323414372268, 'f1-score': 0.9037025750419017, 'support': 13039.0} | 0.9033 | {'precision': 0.8720005544172429, 'recall': 0.8407774265964535, 'f1-score': 0.8543285064684394, 'support': 31600.0} | {'precision': 0.9052526145440706, 'recall': 0.9032911392405063, 'f1-score': 0.9036751198899997, 'support': 31600.0} |
84
+ | 0.2362 | 12.0 | 972 | 0.6348 | {'precision': 0.668590065228299, 'recall': 0.6252932895354294, 'f1-score': 0.6462172647914647, 'support': 4262.0} | {'precision': 0.9247202441505595, 'recall': 0.8397228637413395, 'f1-score': 0.8801742919389979, 'support': 2165.0} | {'precision': 0.99777924000658, 'recall': 0.9997527608373167, 'f1-score': 0.9987650255228059, 'support': 12134.0} | {'precision': 0.8901408450704226, 'recall': 0.920929519134903, 'f1-score': 0.9052734743111314, 'support': 13039.0} | 0.9058 | {'precision': 0.8703075986139653, 'recall': 0.8464246083122471, 'f1-score': 0.8576075141410999, 'support': 31600.0} | {'precision': 0.9039604418893055, 'recall': 0.905759493670886, 'f1-score': 0.9045136384754975, 'support': 31600.0} |
85
+ | 0.0312 | 13.0 | 1053 | 0.5935 | {'precision': 0.6740142052412442, 'recall': 0.6457062412013139, 'f1-score': 0.6595566207309765, 'support': 4262.0} | {'precision': 0.9273797841020608, 'recall': 0.8729792147806005, 'f1-score': 0.8993576017130621, 'support': 2165.0} | {'precision': 0.998025666337611, 'recall': 0.9998351738915444, 'f1-score': 0.9989296006587073, 'support': 12134.0} | {'precision': 0.8968700743075884, 'recall': 0.9164046322570749, 'f1-score': 0.9065321295804567, 'support': 13039.0} | 0.9090 | {'precision': 0.8740724324971261, 'recall': 0.8587313155326335, 'f1-score': 0.8660939881708007, 'support': 31600.0} | {'precision': 0.9077455097960874, 'recall': 0.9089556962025317, 'f1-score': 0.9082096119384979, 'support': 31600.0} |
86
+ | 0.0312 | 14.0 | 1134 | 0.6126 | {'precision': 0.6902082834570266, 'recall': 0.6764429845143125, 'f1-score': 0.6832563099893353, 'support': 4262.0} | {'precision': 0.9273270283723245, 'recall': 0.8605080831408776, 'f1-score': 0.892668902731193, 'support': 2165.0} | {'precision': 0.9987641097470544, 'recall': 0.9990110433492665, 'f1-score': 0.9988875612871329, 'support': 12134.0} | {'precision': 0.9023875875574301, 'recall': 0.9188588081908122, 'f1-score': 0.9105487156102752, 'support': 13039.0} | 0.9129 | {'precision': 0.879671752283459, 'recall': 0.8637052297988173, 'f1-score': 0.8713403724044841, 'support': 31600.0} | {'precision': 0.9124862715934182, 'recall': 0.9129430379746836, 'f1-score': 0.9125890170597477, 'support': 31600.0} |
87
+ | 0.0312 | 15.0 | 1215 | 0.6346 | {'precision': 0.6470333477695972, 'recall': 0.7010793054903801, 'f1-score': 0.672972972972973, 'support': 4262.0} | {'precision': 0.9200581395348837, 'recall': 0.877136258660508, 'f1-score': 0.8980846535824072, 'support': 2165.0} | {'precision': 0.9985185185185185, 'recall': 0.9998351738915444, 'f1-score': 0.9991764124526437, 'support': 12134.0} | {'precision': 0.9112625313283208, 'recall': 0.8923230309072782, 'f1-score': 0.9016933390165459, 'support': 13039.0} | 0.9068 | {'precision': 0.86921813428783, 'recall': 0.8675934422374277, 'f1-score': 0.8679818445061424, 'support': 31600.0} | {'precision': 0.9097328433538203, 'recall': 0.9067721518987342, 'f1-score': 0.9080300671504381, 'support': 31600.0} |
88
+ | 0.0312 | 16.0 | 1296 | 0.6317 | {'precision': 0.6643092880716643, 'recall': 0.661191928671985, 'f1-score': 0.6627469426152399, 'support': 4262.0} | {'precision': 0.9574241617881852, 'recall': 0.8309468822170901, 'f1-score': 0.8897131552917903, 'support': 2165.0} | {'precision': 0.9984362139917695, 'recall': 0.9997527608373167, 'f1-score': 0.999094053697908, 'support': 12134.0} | {'precision': 0.8954160102033161, 'recall': 0.9153309302860649, 'f1-score': 0.9052639563106797, 'support': 13039.0} | 0.9077 | {'precision': 0.8788964185137338, 'recall': 0.8518056255031142, 'f1-score': 0.8642045269789045, 'support': 31600.0} | {'precision': 0.9080526542294312, 'recall': 0.9076898734177216, 'f1-score': 0.9075190007765268, 'support': 31600.0} |
89
+ | 0.0312 | 17.0 | 1377 | 0.6472 | {'precision': 0.6666666666666666, 'recall': 0.684185828249648, 'f1-score': 0.6753126447429365, 'support': 4262.0} | {'precision': 0.9678100263852243, 'recall': 0.8471131639722864, 'f1-score': 0.903448275862069, 'support': 2165.0} | {'precision': 0.998025341451374, 'recall': 0.9996703477830888, 'f1-score': 0.9988471673254282, 'support': 12134.0} | {'precision': 0.9003566820975943, 'recall': 0.9098857274330854, 'f1-score': 0.9050961245041197, 'support': 13039.0} | 0.9096 | {'precision': 0.8832146791502148, 'recall': 0.8602137668595271, 'f1-score': 0.8706760531086384, 'support': 31600.0} | {'precision': 0.9109630478322421, 'recall': 0.909620253164557, 'f1-score': 0.9099907564832829, 'support': 31600.0} |
90
+ | 0.0312 | 18.0 | 1458 | 0.6553 | {'precision': 0.672607421875, 'recall': 0.6464101360863445, 'f1-score': 0.6592486240727448, 'support': 4262.0} | {'precision': 0.9460732984293194, 'recall': 0.8346420323325635, 'f1-score': 0.8868711656441718, 'support': 2165.0} | {'precision': 0.9978613144690301, 'recall': 0.9997527608373167, 'f1-score': 0.9988061421925816, 'support': 12134.0} | {'precision': 0.8936518568132767, 'recall': 0.920929519134903, 'f1-score': 0.9070856624867805, 'support': 13039.0} | 0.9083 | {'precision': 0.8775484728966565, 'recall': 0.850433612097782, 'f1-score': 0.8630028985990696, 'support': 31600.0} | {'precision': 0.9074454833508309, 'recall': 0.9082594936708861, 'f1-score': 0.9074935883527716, 'support': 31600.0} |
91
+ | 0.0058 | 19.0 | 1539 | 0.6835 | {'precision': 0.687516356974614, 'recall': 0.6163772876583763, 'f1-score': 0.6500061858220958, 'support': 4262.0} | {'precision': 0.9501039501039501, 'recall': 0.8443418013856813, 'f1-score': 0.8941061384201515, 'support': 2165.0} | {'precision': 0.9978613144690301, 'recall': 0.9997527608373167, 'f1-score': 0.9988061421925816, 'support': 12134.0} | {'precision': 0.8858227478464009, 'recall': 0.9305928368739934, 'f1-score': 0.9076560571492688, 'support': 13039.0} | 0.9089 | {'precision': 0.8803260923484988, 'recall': 0.8477661716888419, 'f1-score': 0.8626436308960244, 'support': 31600.0} | {'precision': 0.9065019545676358, 'recall': 0.9088607594936708, 'f1-score': 0.9069780763350475, 'support': 31600.0} |
92
+ | 0.0058 | 20.0 | 1620 | 0.6673 | {'precision': 0.6793010091065715, 'recall': 0.6475832942280619, 'f1-score': 0.663063063063063, 'support': 4262.0} | {'precision': 0.9517884914463453, 'recall': 0.8480369515011548, 'f1-score': 0.8969223253541768, 'support': 2165.0} | {'precision': 0.9979434024350116, 'recall': 0.9997527608373167, 'f1-score': 0.9988472622478387, 'support': 12134.0} | {'precision': 0.8936961046684508, 'recall': 0.922003221105913, 'f1-score': 0.9076290060775357, 'support': 13039.0} | 0.9098 | {'precision': 0.8806822519140949, 'recall': 0.8543440569181115, 'f1-score': 0.8666154141856536, 'support': 31600.0} | {'precision': 0.908789611984554, 'recall': 0.9097784810126582, 'f1-score': 0.9089366740356591, 'support': 31600.0} |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.38.2
98
+ - Pytorch 2.2.1+cu121
99
+ - Datasets 2.18.0
100
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71f5c4b05fef2bfdd023e152e475207b336092dacfe32bb6d09305fe763b27d3
3
  size 592324828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6da327faf37cb0c48058ebbe215843503ee19d048023a20529214c8e0142e4a5
3
  size 592324828