Theoreticallyhugo
commited on
trainer: training complete at 2024-02-06 19:19:02.015127.
Browse files- README.md +16 -16
- model.safetensors +1 -1
README.md
CHANGED
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
dataset:
|
17 |
name: fancy_dataset
|
18 |
type: fancy_dataset
|
19 |
-
config:
|
20 |
split: test
|
21 |
-
args:
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Claim: {'precision': 0.
|
37 |
-
- Majorclaim: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Premise: {'precision': 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- Macro avg: {'precision': 0.
|
42 |
-
- Weighted avg: {'precision': 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -68,11 +68,11 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
-
| Training Loss | Epoch | Step | Validation Loss | Claim
|
72 |
-
|
73 |
-
| No log | 1.0 | 41 | 0.
|
74 |
-
| No log | 2.0 | 82 | 0.
|
75 |
-
| No log | 3.0 | 123 | 0.
|
76 |
|
77 |
|
78 |
### Framework versions
|
|
|
16 |
dataset:
|
17 |
name: fancy_dataset
|
18 |
type: fancy_dataset
|
19 |
+
config: sep_tok
|
20 |
split: test
|
21 |
+
args: sep_tok
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8782096113497851
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2733
|
36 |
+
- Claim: {'precision': 0.5897947548460661, 'recall': 0.4865945437441204, 'f1-score': 0.5332474226804124, 'support': 4252.0}
|
37 |
+
- Majorclaim: {'precision': 0.7717437420449724, 'recall': 0.8336388634280477, 'f1-score': 0.8014981273408239, 'support': 2182.0}
|
38 |
+
- O: {'precision': 0.9999121265377856, 'recall': 0.9987711752830686, 'f1-score': 0.9993413252535898, 'support': 11393.0}
|
39 |
+
- Premise: {'precision': 0.8686434047879831, 'recall': 0.9100819672131147, 'f1-score': 0.8888799935953887, 'support': 12200.0}
|
40 |
+
- Accuracy: 0.8782
|
41 |
+
- Macro avg: {'precision': 0.8075235070542018, 'recall': 0.8072716374170879, 'f1-score': 0.8057417172175537, 'support': 30027.0}
|
42 |
+
- Weighted avg: {'precision': 0.8719219548674857, 'recall': 0.8782096113497851, 'f1-score': 0.874082279134535, 'support': 30027.0}
|
43 |
|
44 |
## Model description
|
45 |
|
|
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
+
| No log | 1.0 | 41 | 0.3640 | {'precision': 0.4976234003656307, 'recall': 0.3200846660395108, 'f1-score': 0.3895806497781594, 'support': 4252.0} | {'precision': 0.655590480466996, 'recall': 0.6691109074243813, 'f1-score': 0.6622816965298253, 'support': 2182.0} | {'precision': 0.9937212592854616, 'recall': 0.986307381725621, 'f1-score': 0.9900004405092286, 'support': 11393.0} | {'precision': 0.8257614305444501, 'recall': 0.9311475409836065, 'f1-score': 0.8752937550564395, 'support': 12200.0} | 0.8465 | {'precision': 0.7431741426656346, 'recall': 0.7266626240432799, 'f1-score': 0.7292891354684132, 'support': 30027.0} | {'precision': 0.830657371246385, 'recall': 0.8465048123355646, 'f1-score': 0.8345573788621913, 'support': 30027.0} |
|
74 |
+
| No log | 2.0 | 82 | 0.2836 | {'precision': 0.5498290180752321, 'recall': 0.5293979303857008, 'f1-score': 0.5394200814761563, 'support': 4252.0} | {'precision': 0.7881438289601554, 'recall': 0.7433547204399633, 'f1-score': 0.7650943396226415, 'support': 2182.0} | {'precision': 0.9999119563303398, 'recall': 0.9968401650136048, 'f1-score': 0.9983736978594347, 'support': 11393.0} | {'precision': 0.8714548214428377, 'recall': 0.8940983606557377, 'f1-score': 0.8826313873042844, 'support': 12200.0} | 0.8705 | {'precision': 0.8023349062021413, 'recall': 0.7909227941237517, 'f1-score': 0.7963798765656291, 'support': 30027.0} | {'precision': 0.8685965484304501, 'recall': 0.8704832317580844, 'f1-score': 0.8694050188269901, 'support': 30027.0} |
|
75 |
+
| No log | 3.0 | 123 | 0.2733 | {'precision': 0.5897947548460661, 'recall': 0.4865945437441204, 'f1-score': 0.5332474226804124, 'support': 4252.0} | {'precision': 0.7717437420449724, 'recall': 0.8336388634280477, 'f1-score': 0.8014981273408239, 'support': 2182.0} | {'precision': 0.9999121265377856, 'recall': 0.9987711752830686, 'f1-score': 0.9993413252535898, 'support': 11393.0} | {'precision': 0.8686434047879831, 'recall': 0.9100819672131147, 'f1-score': 0.8888799935953887, 'support': 12200.0} | 0.8782 | {'precision': 0.8075235070542018, 'recall': 0.8072716374170879, 'f1-score': 0.8057417172175537, 'support': 30027.0} | {'precision': 0.8719219548674857, 'recall': 0.8782096113497851, 'f1-score': 0.874082279134535, 'support': 30027.0} |
|
76 |
|
77 |
|
78 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592324828
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5626d1e820f82cf13e292cc22e09fc71b28e68cb756bfb6d84b5bbdd7326dff5
|
3 |
size 592324828
|