--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - essays_su_g metrics: - accuracy model-index: - name: longformer-sep_tok results: - task: name: Token Classification type: token-classification dataset: name: essays_su_g type: essays_su_g config: sep_tok split: test args: sep_tok metrics: - name: Accuracy type: accuracy value: 0.8870016984713758 --- # longformer-sep_tok This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset. It achieves the following results on the evaluation set: - Loss: 0.2615 - Claim: {'precision': 0.6071779744346116, 'recall': 0.5809031044214488, 'f1-score': 0.5937500000000001, 'support': 4252.0} - Majorclaim: {'precision': 0.8395117540687161, 'recall': 0.8510540788267644, 'f1-score': 0.8452435138825672, 'support': 2182.0} - O: {'precision': 1.0, 'recall': 0.9992978144474678, 'f1-score': 0.9996487839143033, 'support': 11393.0} - Premise: {'precision': 0.8835139944992719, 'recall': 0.8952459016393443, 'f1-score': 0.8893412588551421, 'support': 12200.0} - Accuracy: 0.8870 - Macro avg: {'precision': 0.83255093075065, 'recall': 0.8316252248337562, 'f1-score': 0.8319958891630032, 'support': 30027.0} - Weighted avg: {'precision': 0.8853833592288615, 'recall': 0.8870016984713758, 'f1-score': 0.8861327572005248, 'support': 30027.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.3496 | {'precision': 0.514827018121911, 'recall': 0.2939793038570085, 'f1-score': 0.37425149700598803, 'support': 4252.0} | {'precision': 0.6678657074340527, 'recall': 0.7658111824014665, 'f1-score': 0.7134927412467975, 'support': 2182.0} | {'precision': 0.996649620878152, 'recall': 0.9921881857280787, 'f1-score': 0.9944138992742467, 'support': 11393.0} | {'precision': 0.826608505997819, 'recall': 0.9319672131147541, 'f1-score': 0.8761317665189751, 'support': 12200.0} | 0.8524 | {'precision': 0.7514877131079837, 'recall': 0.7459864712753269, 'f1-score': 0.7395724760115018, 'support': 30027.0} | {'precision': 0.8354407819133993, 'recall': 0.8523995071102675, 'f1-score': 0.8381231435918661, 'support': 30027.0} | | No log | 2.0 | 82 | 0.2859 | {'precision': 0.5445935280189423, 'recall': 0.486829727187206, 'f1-score': 0.514094126412517, 'support': 4252.0} | {'precision': 0.8543130990415335, 'recall': 0.6127406049495875, 'f1-score': 0.7136375767280491, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.997366804178004, 'f1-score': 0.9986816663737036, 'support': 11393.0} | {'precision': 0.851030230109791, 'recall': 0.9276229508196722, 'f1-score': 0.8876774648992078, 'support': 12200.0} | 0.8688 | {'precision': 0.8124842142925667, 'recall': 0.7561400217836175, 'f1-score': 0.7785227086033695, 'support': 30027.0} | {'precision': 0.8643984304320985, 'recall': 0.8687847603823226, 'f1-score': 0.8642465352746717, 'support': 30027.0} | | No log | 3.0 | 123 | 0.2615 | {'precision': 0.617028164454516, 'recall': 0.4482596425211665, 'f1-score': 0.5192753030922217, 'support': 4252.0} | {'precision': 0.8376436781609196, 'recall': 0.8015582034830431, 'f1-score': 0.8192037470725996, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9988589484771351, 'f1-score': 0.9994291485531112, 'support': 11393.0} | {'precision': 0.8495916852264291, 'recall': 0.9380327868852459, 'f1-score': 0.8916244643552784, 'support': 12200.0} | 0.8818 | {'precision': 0.8260658819604662, 'recall': 0.7966773953416476, 'f1-score': 0.8073831657683027, 'support': 30027.0} | {'precision': 0.872859786884143, 'recall': 0.8818396776234723, 'f1-score': 0.874538779080845, 'support': 30027.0} | | No log | 4.0 | 164 | 0.2591 | {'precision': 0.6161943319838057, 'recall': 0.5369238005644402, 'f1-score': 0.5738343596832978, 'support': 4252.0} | {'precision': 0.860332541567696, 'recall': 0.8299725022914757, 'f1-score': 0.8448798693725216, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9992100412534012, 'f1-score': 0.9996048645563507, 'support': 11393.0} | {'precision': 0.8684641159510637, 'recall': 0.9135245901639344, 'f1-score': 0.8904246394758917, 'support': 12200.0} | 0.8866 | {'precision': 0.8362477473756413, 'recall': 0.8199077335683129, 'f1-score': 0.8271859332720154, 'support': 30027.0} | {'precision': 0.8820583514802954, 'recall': 0.8866353615079762, 'f1-score': 0.8837096744876479, 'support': 30027.0} | | No log | 5.0 | 205 | 0.2615 | {'precision': 0.6071779744346116, 'recall': 0.5809031044214488, 'f1-score': 0.5937500000000001, 'support': 4252.0} | {'precision': 0.8395117540687161, 'recall': 0.8510540788267644, 'f1-score': 0.8452435138825672, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9992978144474678, 'f1-score': 0.9996487839143033, 'support': 11393.0} | {'precision': 0.8835139944992719, 'recall': 0.8952459016393443, 'f1-score': 0.8893412588551421, 'support': 12200.0} | 0.8870 | {'precision': 0.83255093075065, 'recall': 0.8316252248337562, 'f1-score': 0.8319958891630032, 'support': 30027.0} | {'precision': 0.8853833592288615, 'recall': 0.8870016984713758, 'f1-score': 0.8861327572005248, 'support': 30027.0} | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2