Theoreticallyhugo
commited on
trainer: training complete at 2024-02-06 19:14:46.426746.
Browse files- README.md +83 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: allenai/longformer-base-4096
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- fancy_dataset
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: longformer-simple
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: fancy_dataset
|
18 |
+
type: fancy_dataset
|
19 |
+
config: simple
|
20 |
+
split: test
|
21 |
+
args: simple
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8226736894908453
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# longformer-simple
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4587
|
36 |
+
- Claim: {'precision': 0.5772692208794035, 'recall': 0.5279868297271872, 'f1-score': 0.5515292961552635, 'support': 4252.0}
|
37 |
+
- Majorclaim: {'precision': 0.6656682890303257, 'recall': 0.8148487626031164, 'f1-score': 0.7327426334226252, 'support': 2182.0}
|
38 |
+
- O: {'precision': 0.9301160937855679, 'recall': 0.8810781671159029, 'f1-score': 0.9049332816566081, 'support': 9275.0}
|
39 |
+
- Premise: {'precision': 0.8568813181564913, 'recall': 0.8823770491803279, 'f1-score': 0.8694423131284578, 'support': 12200.0}
|
40 |
+
- Accuracy: 0.8227
|
41 |
+
- Macro avg: {'precision': 0.757483730462947, 'recall': 0.7765727021566337, 'f1-score': 0.7646618810907386, 'support': 27909.0}
|
42 |
+
- Weighted avg: {'precision': 0.8236703495364839, 'recall': 0.8226736894908453, 'f1-score': 0.8221147085496641, 'support': 27909.0}
|
43 |
+
|
44 |
+
## Model description
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Intended uses & limitations
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training and evaluation data
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training procedure
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 2e-05
|
62 |
+
- train_batch_size: 8
|
63 |
+
- eval_batch_size: 8
|
64 |
+
- seed: 42
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 3
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
+
| No log | 1.0 | 41 | 0.5844 | {'precision': 0.4909433962264151, 'recall': 0.30597365945437444, 'f1-score': 0.37699217618081715, 'support': 4252.0} | {'precision': 0.5969423210562891, 'recall': 0.3936755270394134, 'f1-score': 0.4744545705606187, 'support': 2182.0} | {'precision': 0.825323567773653, 'recall': 0.886900269541779, 'f1-score': 0.8550046772684753, 'support': 9275.0} | {'precision': 0.8012704829278856, 'recall': 0.9098360655737705, 'f1-score': 0.8521091620926572, 'support': 12200.0} | 0.7699 | {'precision': 0.6786199419960607, 'recall': 0.6240963804023343, 'f1-score': 0.639640146525642, 'support': 27909.0} | {'precision': 0.7460100844931877, 'recall': 0.7698591852090724, 'f1-score': 0.7511602266394221, 'support': 27909.0} |
|
74 |
+
| No log | 2.0 | 82 | 0.4763 | {'precision': 0.5736620565243535, 'recall': 0.4487300094073377, 'f1-score': 0.5035629453681709, 'support': 4252.0} | {'precision': 0.7095454545454546, 'recall': 0.7153987167736022, 'f1-score': 0.7124600638977636, 'support': 2182.0} | {'precision': 0.8935006435006435, 'recall': 0.8982210242587602, 'f1-score': 0.8958546158395613, 'support': 9275.0} | {'precision': 0.8362814916915537, 'recall': 0.8951639344262295, 'f1-score': 0.8647214854111407, 'support': 12200.0} | 0.8141 | {'precision': 0.7532474115655013, 'recall': 0.7393784212164823, 'f1-score': 0.7441497776291592, 'support': 27909.0} | {'precision': 0.8053779036606528, 'recall': 0.8141101436812498, 'f1-score': 0.80814042735527, 'support': 27909.0} |
|
75 |
+
| No log | 3.0 | 123 | 0.4587 | {'precision': 0.5772692208794035, 'recall': 0.5279868297271872, 'f1-score': 0.5515292961552635, 'support': 4252.0} | {'precision': 0.6656682890303257, 'recall': 0.8148487626031164, 'f1-score': 0.7327426334226252, 'support': 2182.0} | {'precision': 0.9301160937855679, 'recall': 0.8810781671159029, 'f1-score': 0.9049332816566081, 'support': 9275.0} | {'precision': 0.8568813181564913, 'recall': 0.8823770491803279, 'f1-score': 0.8694423131284578, 'support': 12200.0} | 0.8227 | {'precision': 0.757483730462947, 'recall': 0.7765727021566337, 'f1-score': 0.7646618810907386, 'support': 27909.0} | {'precision': 0.8236703495364839, 'recall': 0.8226736894908453, 'f1-score': 0.8221147085496641, 'support': 27909.0} |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.37.1
|
81 |
+
- Pytorch 2.1.2+cu121
|
82 |
+
- Datasets 2.16.1
|
83 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592324828
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:861eae487639c169993b87547ca34ce3efae6e28f0f5e358e18b1b1f8f21b962
|
3 |
size 592324828
|