--- base_model: facebook/wav2vec2-base datasets: - vivos license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-vivos results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: vivos type: vivos config: default split: None args: default metrics: - type: wer value: 0.2558154859967051 name: Wer --- # wav2vec2-vivos This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.4738 - Wer: 0.2558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.0257 | 2.0 | 146 | 4.2455 | 1.0 | | 3.4764 | 4.0 | 292 | 3.6224 | 1.0 | | 3.4259 | 6.0 | 438 | 3.5189 | 1.0 | | 2.6095 | 8.0 | 584 | 1.1439 | 0.7013 | | 0.7018 | 10.0 | 730 | 0.6253 | 0.3943 | | 0.3858 | 12.0 | 876 | 0.5361 | 0.3155 | | 0.2738 | 14.0 | 1022 | 0.4801 | 0.2824 | | 0.2449 | 16.0 | 1168 | 0.4826 | 0.2624 | | 0.1784 | 18.0 | 1314 | 0.4749 | 0.2572 | | 0.1684 | 20.0 | 1460 | 0.4738 | 0.2558 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1