ThoDum commited on
Commit
5fc4fe4
·
1 Parent(s): e939334

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.37 +/- 1.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f5f59ef5926ae84f8d26749a822a59e9c399dc2d0cba68d8401140c3805877f
3
+ size 107992
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc50afdadc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fc50afe0340>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678877511609796074,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi4nTPkVGMz1Q7w4/i4nTPkVGMz1Q7w4/i4nTPkVGMz1Q7w4/i4nTPkVGMz1Q7w4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeThQPyKpy76lqto/xum2v5i+mz9hXMg+GDF5vyaYk7xHb0g/yItfv+9bXr+GkYY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.41315874 0.04376819 0.5583391 ]\n [0.41315874 0.04376819 0.5583391 ]\n [0.41315874 0.04376819 0.5583391 ]\n [0.41315874 0.04376819 0.5583391 ]]",
60
+ "desired_goal": "[[ 0.8133617 -0.39777476 1.7083327 ]\n [-1.4290092 1.216754 0.3913298 ]\n [-0.97340536 -0.01801689 0.78294796]\n [-0.87322664 -0.8685903 0.262829 ]]",
61
+ "observation": "[[0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]\n [0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]\n [0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]\n [0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ+imvQ3lDz5K7mg9CUTcPXHeEj51dkE+9armPLh/B76whPs9kAQVvo7Mr72HUqU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.08149769 0.1405222 0.05686788]\n [ 0.10755164 0.14342667 0.18892844]\n [ 0.02815769 -0.13232315 0.12281168]\n [-0.14552522 -0.08583938 0.02018095]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxNFVurvuBcCUhpRSlIwBbJRLMowBdJRHQKhp6QnQY1p1fZQoaAZoCWgPQwjwarkzEywWwJSGlFKUaBVLMmgWR0Coaav0qYqodX2UKGgGaAloD0MIJLiRskUSCsCUhpRSlGgVSzJoFkdAqGlvitJWenV9lChoBmgJaA9DCEnXTL7ZxhLAlIaUUpRoFUsyaBZHQKhpMjeKsMl1fZQoaAZoCWgPQwhFLGLYYcwYwJSGlFKUaBVLMmgWR0CoavUDMeOodX2UKGgGaAloD0MIVKwahLk9BcCUhpRSlGgVSzJoFkdAqGq3779AHHV9lChoBmgJaA9DCNkj1AypshHAlIaUUpRoFUsyaBZHQKhqfCMPz4F1fZQoaAZoCWgPQwi1UgjkErcQwJSGlFKUaBVLMmgWR0Coaj7drO7hdX2UKGgGaAloD0MId2SsNv+PDMCUhpRSlGgVSzJoFkdAqGwD5j6N2nV9lChoBmgJaA9DCF6iemtgKw/AlIaUUpRoFUsyaBZHQKhrxvQWvbJ1fZQoaAZoCWgPQwjTwfo/h5kUwJSGlFKUaBVLMmgWR0Coa4sB6rvLdX2UKGgGaAloD0MIcqd0sP6PD8CUhpRSlGgVSzJoFkdAqGtNqFh5PnV9lChoBmgJaA9DCP7RN2kaVAfAlIaUUpRoFUsyaBZHQKhtFmcvugJ1fZQoaAZoCWgPQwgF+G7zxqkMwJSGlFKUaBVLMmgWR0CobNkUj9n9dX2UKGgGaAloD0MIh8CRQIN9EsCUhpRSlGgVSzJoFkdAqGycsYl6aHV9lChoBmgJaA9DCMxFfCdm/fq/lIaUUpRoFUsyaBZHQKhsX/9YOlR1fZQoaAZoCWgPQwjl0viFV1IJwJSGlFKUaBVLMmgWR0CobhrPdEb6dX2UKGgGaAloD0MI8mH2su00/L+UhpRSlGgVSzJoFkdAqG3d3Qla83V9lChoBmgJaA9DCPQZUG9GLQTAlIaUUpRoFUsyaBZHQKhtoWu5jH51fZQoaAZoCWgPQwhPO/w1WSMRwJSGlFKUaBVLMmgWR0CobWQIt16mdX2UKGgGaAloD0MI9tGpK59lCsCUhpRSlGgVSzJoFkdAqG8lapxWDHV9lChoBmgJaA9DCLnjTX6LbhHAlIaUUpRoFUsyaBZHQKhu6EZBLPF1fZQoaAZoCWgPQwjuI7cm3dYBwJSGlFKUaBVLMmgWR0Cobqx2St/4dX2UKGgGaAloD0MIBVPNrKVgCsCUhpRSlGgVSzJoFkdAqG5vLFGXonV9lChoBmgJaA9DCAZoW806QxPAlIaUUpRoFUsyaBZHQKhwLwvxpcp1fZQoaAZoCWgPQwjpX5LKFBMQwJSGlFKUaBVLMmgWR0Cob/IbGWD6dX2UKGgGaAloD0MIS8rd5/goDcCUhpRSlGgVSzJoFkdAqG+18ma6SXV9lChoBmgJaA9DCDwW26Si8QzAlIaUUpRoFUsyaBZHQKhveP9UCJZ1fZQoaAZoCWgPQwio5Qeu8sQBwJSGlFKUaBVLMmgWR0CocTL9MsYmdX2UKGgGaAloD0MIOBPThViNE8CUhpRSlGgVSzJoFkdAqHD1rKvFFXV9lChoBmgJaA9DCJj75ChAdBDAlIaUUpRoFUsyaBZHQKhwuUCaJAN1fZQoaAZoCWgPQwin5nKDoW4PwJSGlFKUaBVLMmgWR0CocHvGhmGudX2UKGgGaAloD0MIsAPnjCg9EcCUhpRSlGgVSzJoFkdAqHI4PkJa7nV9lChoBmgJaA9DCDCgF+5cqBfAlIaUUpRoFUsyaBZHQKhx+v+OwPl1fZQoaAZoCWgPQwg9m1Wfq80MwJSGlFKUaBVLMmgWR0Cocb7PQfITdX2UKGgGaAloD0MIg02dR8U/AsCUhpRSlGgVSzJoFkdAqHGBqZc9n3V9lChoBmgJaA9DCFmkiXeA5xHAlIaUUpRoFUsyaBZHQKhzHlS0jTt1fZQoaAZoCWgPQwiML9rjhcQQwJSGlFKUaBVLMmgWR0CocuERradudX2UKGgGaAloD0MISMK+nURECMCUhpRSlGgVSzJoFkdAqHKkj9n9N3V9lChoBmgJaA9DCH5xqUpbnArAlIaUUpRoFUsyaBZHQKhyZxjJ+2F1fZQoaAZoCWgPQwh88NqlDccLwJSGlFKUaBVLMmgWR0CodBRxtHhCdX2UKGgGaAloD0MIuatXkdFBDMCUhpRSlGgVSzJoFkdAqHPXTG5tnHV9lChoBmgJaA9DCES+S6lLphPAlIaUUpRoFUsyaBZHQKhzmxZ+x4Z1fZQoaAZoCWgPQwjxSScSTPUTwJSGlFKUaBVLMmgWR0Coc13IuGsWdX2UKGgGaAloD0MIj+TyH9IvDsCUhpRSlGgVSzJoFkdAqHUKqfe1r3V9lChoBmgJaA9DCJELzuDvFxDAlIaUUpRoFUsyaBZHQKh0zXZGrjp1fZQoaAZoCWgPQwg9uaZAZmcLwJSGlFKUaBVLMmgWR0CodJHFo+OfdX2UKGgGaAloD0MItOOG302HEMCUhpRSlGgVSzJoFkdAqHRUSZjQRnV9lChoBmgJaA9DCG3n+6nxMgHAlIaUUpRoFUsyaBZHQKh2t0/W1+l1fZQoaAZoCWgPQwj1DrdDw+ILwJSGlFKUaBVLMmgWR0CodnqpLmITdX2UKGgGaAloD0MIpU3VPbLZD8CUhpRSlGgVSzJoFkdAqHY+zMRpUXV9lChoBmgJaA9DCOhM2lTdgwnAlIaUUpRoFUsyaBZHQKh2Ama6ST11fZQoaAZoCWgPQwg6JLVQMvkSwJSGlFKUaBVLMmgWR0CoeEufdyksdX2UKGgGaAloD0MImfOMfcmmBcCUhpRSlGgVSzJoFkdAqHgO7e2uxXV9lChoBmgJaA9DCB+94T5yCwnAlIaUUpRoFUsyaBZHQKh30w0O3Dx1fZQoaAZoCWgPQwhDrWnecUoSwJSGlFKUaBVLMmgWR0Cod5ZTZQHidX2UKGgGaAloD0MIiEz5EFT9FMCUhpRSlGgVSzJoFkdAqHnZo24usnV9lChoBmgJaA9DCNECtK1mjRTAlIaUUpRoFUsyaBZHQKh5nZkCmuV1fZQoaAZoCWgPQwiUaTS5GCMVwJSGlFKUaBVLMmgWR0CoeWIbXHzZdX2UKGgGaAloD0MIYCAIkKEDD8CUhpRSlGgVSzJoFkdAqHklfNRm9XV9lChoBmgJaA9DCEhwI2WL9BLAlIaUUpRoFUsyaBZHQKh7of029+R1fZQoaAZoCWgPQwg1f0xr01gHwJSGlFKUaBVLMmgWR0Coe2WH1vl2dX2UKGgGaAloD0MIIZG28SfKFMCUhpRSlGgVSzJoFkdAqHsp22XsxHV9lChoBmgJaA9DCICaWrbWNwDAlIaUUpRoFUsyaBZHQKh67qu8sc11fZQoaAZoCWgPQwh1yw7xD8sSwJSGlFKUaBVLMmgWR0CofUxvWH1wdX2UKGgGaAloD0MINnf0v1yrEsCUhpRSlGgVSzJoFkdAqH0QIppeu3V9lChoBmgJaA9DCO7qVWR0wAjAlIaUUpRoFUsyaBZHQKh81SAH3UR1fZQoaAZoCWgPQwg/An/4+T8TwJSGlFKUaBVLMmgWR0CofJjxb0OFdX2UKGgGaAloD0MI1nQ90XUBB8CUhpRSlGgVSzJoFkdAqH8G3Sa3JHV9lChoBmgJaA9DCApmTMEaxw7AlIaUUpRoFUsyaBZHQKh+yuh9LHx1fZQoaAZoCWgPQwh+5Nak28IRwJSGlFKUaBVLMmgWR0Cofo9U83dcdX2UKGgGaAloD0MITG4UWWs4E8CUhpRSlGgVSzJoFkdAqH5SbjLjgnV9lChoBmgJaA9DCHzuBPuvcxXAlIaUUpRoFUsyaBZHQKiAi2rn1Wd1fZQoaAZoCWgPQwgmjjwQWVQSwJSGlFKUaBVLMmgWR0CogE5D7ZWadX2UKGgGaAloD0MIVkeOdAZG+7+UhpRSlGgVSzJoFkdAqIAR4yGi6HV9lChoBmgJaA9DCPFFe7yQfhLAlIaUUpRoFUsyaBZHQKh/1FcY64l1fZQoaAZoCWgPQwgEBHP0+B0RwJSGlFKUaBVLMmgWR0CogXK9wm3OdX2UKGgGaAloD0MIz7wcdt8xEsCUhpRSlGgVSzJoFkdAqIE1z2exwHV9lChoBmgJaA9DCCLDKt7I7BDAlIaUUpRoFUsyaBZHQKiA+WyC4Bp1fZQoaAZoCWgPQwjQC3cujOQQwJSGlFKUaBVLMmgWR0CogLw6hg3MdX2UKGgGaAloD0MIiDB+GvemAMCUhpRSlGgVSzJoFkdAqIKIwwj+rHV9lChoBmgJaA9DCL5LqUvGoRHAlIaUUpRoFUsyaBZHQKiCS606YE51fZQoaAZoCWgPQwjH9e/6zCkUwJSGlFKUaBVLMmgWR0Cogg9v863idX2UKGgGaAloD0MIhpM0f0xbEsCUhpRSlGgVSzJoFkdAqIHSBTXJ5nV9lChoBmgJaA9DCLJnz2VqAhTAlIaUUpRoFUsyaBZHQKiDc+GoJiR1fZQoaAZoCWgPQwgpB7MJMPwTwJSGlFKUaBVLMmgWR0CogzaWPcSHdX2UKGgGaAloD0MIqiwKuyjqEMCUhpRSlGgVSzJoFkdAqIL6NbTts3V9lChoBmgJaA9DCGIUBI9vzxbAlIaUUpRoFUsyaBZHQKiCvOj7AL11fZQoaAZoCWgPQwj1LAjlfRwSwJSGlFKUaBVLMmgWR0CohHXOfNA1dX2UKGgGaAloD0MIRfC/lexYA8CUhpRSlGgVSzJoFkdAqIQ5sj3VTnV9lChoBmgJaA9DCFRXPsvzUBTAlIaUUpRoFUsyaBZHQKiD/m7J4jd1fZQoaAZoCWgPQwhmahK8IW0UwJSGlFKUaBVLMmgWR0Cog8Gt6ol2dX2UKGgGaAloD0MI9DRgkPRZE8CUhpRSlGgVSzJoFkdAqIV/9UCJXXV9lChoBmgJaA9DCO3w12SNChHAlIaUUpRoFUsyaBZHQKiFQtSydFx1fZQoaAZoCWgPQwgxYMlVLL4BwJSGlFKUaBVLMmgWR0CohQZ6MR6GdX2UKGgGaAloD0MIv/T256JRFcCUhpRSlGgVSzJoFkdAqITJEtuk13V9lChoBmgJaA9DCNvEyf0OZRnAlIaUUpRoFUsyaBZHQKiGkqioKlZ1fZQoaAZoCWgPQwgV5Gcj180SwJSGlFKUaBVLMmgWR0CohlVUEPlNdX2UKGgGaAloD0MIi6Td6GM+/b+UhpRSlGgVSzJoFkdAqIYZCUornXV9lChoBmgJaA9DCGx3D9B9OQ3AlIaUUpRoFUsyaBZHQKiF2+10DEF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:004cb3262a4e902a8b5dece5028bb933c1dbb0ef8fb0ea4197ecb0eb26ec74b7
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a0d7b504c3313af04b67cc459d629e105c10ab0442d6e55ec0c28f22155a83f
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc50afdadc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc50afe0340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678877511609796074, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi4nTPkVGMz1Q7w4/i4nTPkVGMz1Q7w4/i4nTPkVGMz1Q7w4/i4nTPkVGMz1Q7w4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeThQPyKpy76lqto/xum2v5i+mz9hXMg+GDF5vyaYk7xHb0g/yItfv+9bXr+GkYY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyLidM+RUYzPVDvDj9iDFA8MipoOx8hBDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41315874 0.04376819 0.5583391 ]\n [0.41315874 0.04376819 0.5583391 ]\n [0.41315874 0.04376819 0.5583391 ]\n [0.41315874 0.04376819 0.5583391 ]]", "desired_goal": "[[ 0.8133617 -0.39777476 1.7083327 ]\n [-1.4290092 1.216754 0.3913298 ]\n [-0.97340536 -0.01801689 0.78294796]\n [-0.87322664 -0.8685903 0.262829 ]]", "observation": "[[0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]\n [0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]\n [0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]\n [0.41315874 0.04376819 0.5583391 0.01269826 0.00354255 0.00806454]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ+imvQ3lDz5K7mg9CUTcPXHeEj51dkE+9armPLh/B76whPs9kAQVvo7Mr72HUqU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08149769 0.1405222 0.05686788]\n [ 0.10755164 0.14342667 0.18892844]\n [ 0.02815769 -0.13232315 0.12281168]\n [-0.14552522 -0.08583938 0.02018095]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxNFVurvuBcCUhpRSlIwBbJRLMowBdJRHQKhp6QnQY1p1fZQoaAZoCWgPQwjwarkzEywWwJSGlFKUaBVLMmgWR0Coaav0qYqodX2UKGgGaAloD0MIJLiRskUSCsCUhpRSlGgVSzJoFkdAqGlvitJWenV9lChoBmgJaA9DCEnXTL7ZxhLAlIaUUpRoFUsyaBZHQKhpMjeKsMl1fZQoaAZoCWgPQwhFLGLYYcwYwJSGlFKUaBVLMmgWR0CoavUDMeOodX2UKGgGaAloD0MIVKwahLk9BcCUhpRSlGgVSzJoFkdAqGq3779AHHV9lChoBmgJaA9DCNkj1AypshHAlIaUUpRoFUsyaBZHQKhqfCMPz4F1fZQoaAZoCWgPQwi1UgjkErcQwJSGlFKUaBVLMmgWR0Coaj7drO7hdX2UKGgGaAloD0MId2SsNv+PDMCUhpRSlGgVSzJoFkdAqGwD5j6N2nV9lChoBmgJaA9DCF6iemtgKw/AlIaUUpRoFUsyaBZHQKhrxvQWvbJ1fZQoaAZoCWgPQwjTwfo/h5kUwJSGlFKUaBVLMmgWR0Coa4sB6rvLdX2UKGgGaAloD0MIcqd0sP6PD8CUhpRSlGgVSzJoFkdAqGtNqFh5PnV9lChoBmgJaA9DCP7RN2kaVAfAlIaUUpRoFUsyaBZHQKhtFmcvugJ1fZQoaAZoCWgPQwgF+G7zxqkMwJSGlFKUaBVLMmgWR0CobNkUj9n9dX2UKGgGaAloD0MIh8CRQIN9EsCUhpRSlGgVSzJoFkdAqGycsYl6aHV9lChoBmgJaA9DCMxFfCdm/fq/lIaUUpRoFUsyaBZHQKhsX/9YOlR1fZQoaAZoCWgPQwjl0viFV1IJwJSGlFKUaBVLMmgWR0CobhrPdEb6dX2UKGgGaAloD0MI8mH2su00/L+UhpRSlGgVSzJoFkdAqG3d3Qla83V9lChoBmgJaA9DCPQZUG9GLQTAlIaUUpRoFUsyaBZHQKhtoWu5jH51fZQoaAZoCWgPQwhPO/w1WSMRwJSGlFKUaBVLMmgWR0CobWQIt16mdX2UKGgGaAloD0MI9tGpK59lCsCUhpRSlGgVSzJoFkdAqG8lapxWDHV9lChoBmgJaA9DCLnjTX6LbhHAlIaUUpRoFUsyaBZHQKhu6EZBLPF1fZQoaAZoCWgPQwjuI7cm3dYBwJSGlFKUaBVLMmgWR0Cobqx2St/4dX2UKGgGaAloD0MIBVPNrKVgCsCUhpRSlGgVSzJoFkdAqG5vLFGXonV9lChoBmgJaA9DCAZoW806QxPAlIaUUpRoFUsyaBZHQKhwLwvxpcp1fZQoaAZoCWgPQwjpX5LKFBMQwJSGlFKUaBVLMmgWR0Cob/IbGWD6dX2UKGgGaAloD0MIS8rd5/goDcCUhpRSlGgVSzJoFkdAqG+18ma6SXV9lChoBmgJaA9DCDwW26Si8QzAlIaUUpRoFUsyaBZHQKhveP9UCJZ1fZQoaAZoCWgPQwio5Qeu8sQBwJSGlFKUaBVLMmgWR0CocTL9MsYmdX2UKGgGaAloD0MIOBPThViNE8CUhpRSlGgVSzJoFkdAqHD1rKvFFXV9lChoBmgJaA9DCJj75ChAdBDAlIaUUpRoFUsyaBZHQKhwuUCaJAN1fZQoaAZoCWgPQwin5nKDoW4PwJSGlFKUaBVLMmgWR0CocHvGhmGudX2UKGgGaAloD0MIsAPnjCg9EcCUhpRSlGgVSzJoFkdAqHI4PkJa7nV9lChoBmgJaA9DCDCgF+5cqBfAlIaUUpRoFUsyaBZHQKhx+v+OwPl1fZQoaAZoCWgPQwg9m1Wfq80MwJSGlFKUaBVLMmgWR0Cocb7PQfITdX2UKGgGaAloD0MIg02dR8U/AsCUhpRSlGgVSzJoFkdAqHGBqZc9n3V9lChoBmgJaA9DCFmkiXeA5xHAlIaUUpRoFUsyaBZHQKhzHlS0jTt1fZQoaAZoCWgPQwiML9rjhcQQwJSGlFKUaBVLMmgWR0CocuERradudX2UKGgGaAloD0MISMK+nURECMCUhpRSlGgVSzJoFkdAqHKkj9n9N3V9lChoBmgJaA9DCH5xqUpbnArAlIaUUpRoFUsyaBZHQKhyZxjJ+2F1fZQoaAZoCWgPQwh88NqlDccLwJSGlFKUaBVLMmgWR0CodBRxtHhCdX2UKGgGaAloD0MIuatXkdFBDMCUhpRSlGgVSzJoFkdAqHPXTG5tnHV9lChoBmgJaA9DCES+S6lLphPAlIaUUpRoFUsyaBZHQKhzmxZ+x4Z1fZQoaAZoCWgPQwjxSScSTPUTwJSGlFKUaBVLMmgWR0Coc13IuGsWdX2UKGgGaAloD0MIj+TyH9IvDsCUhpRSlGgVSzJoFkdAqHUKqfe1r3V9lChoBmgJaA9DCJELzuDvFxDAlIaUUpRoFUsyaBZHQKh0zXZGrjp1fZQoaAZoCWgPQwg9uaZAZmcLwJSGlFKUaBVLMmgWR0CodJHFo+OfdX2UKGgGaAloD0MItOOG302HEMCUhpRSlGgVSzJoFkdAqHRUSZjQRnV9lChoBmgJaA9DCG3n+6nxMgHAlIaUUpRoFUsyaBZHQKh2t0/W1+l1fZQoaAZoCWgPQwj1DrdDw+ILwJSGlFKUaBVLMmgWR0CodnqpLmITdX2UKGgGaAloD0MIpU3VPbLZD8CUhpRSlGgVSzJoFkdAqHY+zMRpUXV9lChoBmgJaA9DCOhM2lTdgwnAlIaUUpRoFUsyaBZHQKh2Ama6ST11fZQoaAZoCWgPQwg6JLVQMvkSwJSGlFKUaBVLMmgWR0CoeEufdyksdX2UKGgGaAloD0MImfOMfcmmBcCUhpRSlGgVSzJoFkdAqHgO7e2uxXV9lChoBmgJaA9DCB+94T5yCwnAlIaUUpRoFUsyaBZHQKh30w0O3Dx1fZQoaAZoCWgPQwhDrWnecUoSwJSGlFKUaBVLMmgWR0Cod5ZTZQHidX2UKGgGaAloD0MIiEz5EFT9FMCUhpRSlGgVSzJoFkdAqHnZo24usnV9lChoBmgJaA9DCNECtK1mjRTAlIaUUpRoFUsyaBZHQKh5nZkCmuV1fZQoaAZoCWgPQwiUaTS5GCMVwJSGlFKUaBVLMmgWR0CoeWIbXHzZdX2UKGgGaAloD0MIYCAIkKEDD8CUhpRSlGgVSzJoFkdAqHklfNRm9XV9lChoBmgJaA9DCEhwI2WL9BLAlIaUUpRoFUsyaBZHQKh7of029+R1fZQoaAZoCWgPQwg1f0xr01gHwJSGlFKUaBVLMmgWR0Coe2WH1vl2dX2UKGgGaAloD0MIIZG28SfKFMCUhpRSlGgVSzJoFkdAqHsp22XsxHV9lChoBmgJaA9DCICaWrbWNwDAlIaUUpRoFUsyaBZHQKh67qu8sc11fZQoaAZoCWgPQwh1yw7xD8sSwJSGlFKUaBVLMmgWR0CofUxvWH1wdX2UKGgGaAloD0MINnf0v1yrEsCUhpRSlGgVSzJoFkdAqH0QIppeu3V9lChoBmgJaA9DCO7qVWR0wAjAlIaUUpRoFUsyaBZHQKh81SAH3UR1fZQoaAZoCWgPQwg/An/4+T8TwJSGlFKUaBVLMmgWR0CofJjxb0OFdX2UKGgGaAloD0MI1nQ90XUBB8CUhpRSlGgVSzJoFkdAqH8G3Sa3JHV9lChoBmgJaA9DCApmTMEaxw7AlIaUUpRoFUsyaBZHQKh+yuh9LHx1fZQoaAZoCWgPQwh+5Nak28IRwJSGlFKUaBVLMmgWR0Cofo9U83dcdX2UKGgGaAloD0MITG4UWWs4E8CUhpRSlGgVSzJoFkdAqH5SbjLjgnV9lChoBmgJaA9DCHzuBPuvcxXAlIaUUpRoFUsyaBZHQKiAi2rn1Wd1fZQoaAZoCWgPQwgmjjwQWVQSwJSGlFKUaBVLMmgWR0CogE5D7ZWadX2UKGgGaAloD0MIVkeOdAZG+7+UhpRSlGgVSzJoFkdAqIAR4yGi6HV9lChoBmgJaA9DCPFFe7yQfhLAlIaUUpRoFUsyaBZHQKh/1FcY64l1fZQoaAZoCWgPQwgEBHP0+B0RwJSGlFKUaBVLMmgWR0CogXK9wm3OdX2UKGgGaAloD0MIz7wcdt8xEsCUhpRSlGgVSzJoFkdAqIE1z2exwHV9lChoBmgJaA9DCCLDKt7I7BDAlIaUUpRoFUsyaBZHQKiA+WyC4Bp1fZQoaAZoCWgPQwjQC3cujOQQwJSGlFKUaBVLMmgWR0CogLw6hg3MdX2UKGgGaAloD0MIiDB+GvemAMCUhpRSlGgVSzJoFkdAqIKIwwj+rHV9lChoBmgJaA9DCL5LqUvGoRHAlIaUUpRoFUsyaBZHQKiCS606YE51fZQoaAZoCWgPQwjH9e/6zCkUwJSGlFKUaBVLMmgWR0Cogg9v863idX2UKGgGaAloD0MIhpM0f0xbEsCUhpRSlGgVSzJoFkdAqIHSBTXJ5nV9lChoBmgJaA9DCLJnz2VqAhTAlIaUUpRoFUsyaBZHQKiDc+GoJiR1fZQoaAZoCWgPQwgpB7MJMPwTwJSGlFKUaBVLMmgWR0CogzaWPcSHdX2UKGgGaAloD0MIqiwKuyjqEMCUhpRSlGgVSzJoFkdAqIL6NbTts3V9lChoBmgJaA9DCGIUBI9vzxbAlIaUUpRoFUsyaBZHQKiCvOj7AL11fZQoaAZoCWgPQwj1LAjlfRwSwJSGlFKUaBVLMmgWR0CohHXOfNA1dX2UKGgGaAloD0MIRfC/lexYA8CUhpRSlGgVSzJoFkdAqIQ5sj3VTnV9lChoBmgJaA9DCFRXPsvzUBTAlIaUUpRoFUsyaBZHQKiD/m7J4jd1fZQoaAZoCWgPQwhmahK8IW0UwJSGlFKUaBVLMmgWR0Cog8Gt6ol2dX2UKGgGaAloD0MI9DRgkPRZE8CUhpRSlGgVSzJoFkdAqIV/9UCJXXV9lChoBmgJaA9DCO3w12SNChHAlIaUUpRoFUsyaBZHQKiFQtSydFx1fZQoaAZoCWgPQwgxYMlVLL4BwJSGlFKUaBVLMmgWR0CohQZ6MR6GdX2UKGgGaAloD0MIv/T256JRFcCUhpRSlGgVSzJoFkdAqITJEtuk13V9lChoBmgJaA9DCNvEyf0OZRnAlIaUUpRoFUsyaBZHQKiGkqioKlZ1fZQoaAZoCWgPQwgV5Gcj180SwJSGlFKUaBVLMmgWR0CohlVUEPlNdX2UKGgGaAloD0MIi6Td6GM+/b+UhpRSlGgVSzJoFkdAqIYZCUornXV9lChoBmgJaA9DCGx3D9B9OQ3AlIaUUpRoFUsyaBZHQKiF2+10DEF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (875 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.3721854139119385, "std_reward": 1.169036178192494, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T11:44:14.720006"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575f576c1ab0fcbd7a730368cbc57f13c64b789845b770a35d77c5358580b57a
3
+ size 3056