Upload moondream.py
Browse files- moondream.py +3 -184
moondream.py
CHANGED
@@ -1,185 +1,3 @@
|
|
1 |
-
"""
|
2 |
-
import torch
|
3 |
-
from .vision_encoder import VisionEncoder
|
4 |
-
from .configuration_moondream import MoondreamConfig
|
5 |
-
from transformers import PreTrainedModel, TextIteratorStreamer
|
6 |
-
|
7 |
-
from .modeling_phi import PhiForCausalLM
|
8 |
-
from .configuration_moondream import PhiConfig
|
9 |
-
|
10 |
-
class Moondream(PreTrainedModel):
|
11 |
-
config_class = MoondreamConfig
|
12 |
-
_supports_flash_attn_2 = True
|
13 |
-
|
14 |
-
def __init__(self, config):
|
15 |
-
super().__init__(config)
|
16 |
-
self.vision_encoder = VisionEncoder(
|
17 |
-
use_flash_attn=config._attn_implementation == "flash_attention_2"
|
18 |
-
)
|
19 |
-
|
20 |
-
if type(config.text_config) == dict:
|
21 |
-
phi_config = PhiConfig(
|
22 |
-
**config.text_config, attn_implementation=config._attn_implementation
|
23 |
-
)
|
24 |
-
else:
|
25 |
-
phi_config = config.text_config
|
26 |
-
self.text_model = PhiForCausalLM(phi_config)
|
27 |
-
|
28 |
-
@property
|
29 |
-
def device(self):
|
30 |
-
return self.text_model.device
|
31 |
-
|
32 |
-
def encode_image(self, image):
|
33 |
-
with torch.no_grad():
|
34 |
-
return self.vision_encoder(image)
|
35 |
-
|
36 |
-
def input_embeds(self, prompt, image_embeds, tokenizer):
|
37 |
-
def _tokenize(txt):
|
38 |
-
return tokenizer(
|
39 |
-
txt, return_tensors="pt", add_special_tokens=False
|
40 |
-
).input_ids.to(self.device)
|
41 |
-
|
42 |
-
text_emb = self.text_model.get_input_embeddings()
|
43 |
-
|
44 |
-
# Add BOS token
|
45 |
-
embeds = []
|
46 |
-
embeds.append(
|
47 |
-
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
|
48 |
-
)
|
49 |
-
|
50 |
-
if "<image>" not in prompt:
|
51 |
-
embeds.append(text_emb(_tokenize(prompt)))
|
52 |
-
else:
|
53 |
-
assert prompt.count("<image>") == 1
|
54 |
-
before, after = prompt.split("<image>")
|
55 |
-
if len(before) > 0:
|
56 |
-
embeds.append(text_emb(_tokenize(before)))
|
57 |
-
embeds.append(image_embeds.to(self.device))
|
58 |
-
if len(after) > 0:
|
59 |
-
embeds.append(text_emb(_tokenize(after)))
|
60 |
-
|
61 |
-
return torch.cat(embeds, dim=1)
|
62 |
-
|
63 |
-
def get_input_embeddings(self):
|
64 |
-
return self.text_model.get_input_embeddings()
|
65 |
-
|
66 |
-
def generate(
|
67 |
-
self,
|
68 |
-
image_embeds,
|
69 |
-
prompt,
|
70 |
-
tokenizer,
|
71 |
-
max_new_tokens=128,
|
72 |
-
**kwargs,
|
73 |
-
):
|
74 |
-
generate_config = {
|
75 |
-
"eos_token_id": tokenizer.eos_token_id,
|
76 |
-
"bos_token_id": tokenizer.bos_token_id,
|
77 |
-
"pad_token_id": tokenizer.bos_token_id,
|
78 |
-
"max_new_tokens": max_new_tokens,
|
79 |
-
**kwargs,
|
80 |
-
}
|
81 |
-
|
82 |
-
with torch.no_grad():
|
83 |
-
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
84 |
-
streamer = TextIteratorStreamer(tokenizer)
|
85 |
-
output_ids = self.text_model.generate(
|
86 |
-
inputs_embeds=inputs_embeds, streamer=streamer, **generate_config
|
87 |
-
)
|
88 |
-
print("FINISHED")
|
89 |
-
|
90 |
-
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
91 |
-
|
92 |
-
def answer_question(
|
93 |
-
self,
|
94 |
-
image_embeds,
|
95 |
-
question,
|
96 |
-
tokenizer,
|
97 |
-
chat_history="",
|
98 |
-
result_queue=None,
|
99 |
-
**kwargs,
|
100 |
-
):
|
101 |
-
prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer:"
|
102 |
-
answer = self.generate(
|
103 |
-
image_embeds,
|
104 |
-
prompt,
|
105 |
-
tokenizer=tokenizer,
|
106 |
-
max_new_tokens=512,
|
107 |
-
**kwargs,
|
108 |
-
)[0]
|
109 |
-
cleaned_answer = answer.strip()
|
110 |
-
|
111 |
-
# Use the result_queue to pass the result if it is provided
|
112 |
-
if result_queue:
|
113 |
-
result_queue.put(cleaned_answer)
|
114 |
-
else:
|
115 |
-
return cleaned_answer
|
116 |
-
|
117 |
-
def batch_answer(
|
118 |
-
self,
|
119 |
-
images,
|
120 |
-
prompts,
|
121 |
-
tokenizer,
|
122 |
-
**kwargs,
|
123 |
-
):
|
124 |
-
image_embeds = self.encode_image(images)
|
125 |
-
|
126 |
-
templated_prompts = [
|
127 |
-
f"<image>\n\nQuestion: {prompt}\n\nAnswer:" for prompt in prompts
|
128 |
-
]
|
129 |
-
prompt_embs = [
|
130 |
-
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
|
131 |
-
for prompt, image_embed in zip(templated_prompts, image_embeds)
|
132 |
-
]
|
133 |
-
|
134 |
-
bos_emb = prompt_embs[0][0]
|
135 |
-
max_len = max([p.shape[0] for p in prompt_embs])
|
136 |
-
|
137 |
-
inputs_embeds = torch.cat(
|
138 |
-
[
|
139 |
-
torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
|
140 |
-
for p in prompt_embs
|
141 |
-
],
|
142 |
-
dim=0,
|
143 |
-
)
|
144 |
-
attention_mask = torch.cat(
|
145 |
-
[
|
146 |
-
torch.cat(
|
147 |
-
[
|
148 |
-
torch.zeros(
|
149 |
-
1,
|
150 |
-
max_len - p.shape[0],
|
151 |
-
device=self.device,
|
152 |
-
dtype=torch.long,
|
153 |
-
),
|
154 |
-
torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
|
155 |
-
],
|
156 |
-
dim=1,
|
157 |
-
)
|
158 |
-
for p in prompt_embs
|
159 |
-
],
|
160 |
-
dim=0,
|
161 |
-
)
|
162 |
-
|
163 |
-
generate_config = {
|
164 |
-
"eos_token_id": tokenizer.eos_token_id,
|
165 |
-
"bos_token_id": tokenizer.bos_token_id,
|
166 |
-
"pad_token_id": tokenizer.bos_token_id,
|
167 |
-
"max_new_tokens": 512,
|
168 |
-
**kwargs,
|
169 |
-
}
|
170 |
-
|
171 |
-
with torch.no_grad():
|
172 |
-
output_ids = self.text_model.generate(
|
173 |
-
inputs_embeds=inputs_embeds,
|
174 |
-
attention_mask=attention_mask,
|
175 |
-
**generate_config,
|
176 |
-
)
|
177 |
-
|
178 |
-
return [
|
179 |
-
x.strip()
|
180 |
-
for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
181 |
-
]
|
182 |
-
"""
|
183 |
import torch
|
184 |
from .vision_encoder import VisionEncoder
|
185 |
from .configuration_moondream import MoondreamConfig
|
@@ -189,7 +7,7 @@ from .modeling_phi import PhiForCausalLM
|
|
189 |
from .configuration_moondream import PhiConfig
|
190 |
|
191 |
from threading import Thread
|
192 |
-
|
193 |
|
194 |
|
195 |
class Moondream(PreTrainedModel):
|
@@ -266,7 +84,7 @@ class Moondream(PreTrainedModel):
|
|
266 |
|
267 |
with torch.no_grad():
|
268 |
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
269 |
-
streamer = TextIteratorStreamer(tokenizer)
|
270 |
|
271 |
# Start generation in a separate thread
|
272 |
thread = Thread(target=self.text_model.generate, kwargs={
|
@@ -278,6 +96,7 @@ class Moondream(PreTrainedModel):
|
|
278 |
|
279 |
# Yield generated text as it becomes available
|
280 |
for new_text in streamer:
|
|
|
281 |
yield new_text
|
282 |
|
283 |
thread.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from .vision_encoder import VisionEncoder
|
3 |
from .configuration_moondream import MoondreamConfig
|
|
|
7 |
from .configuration_moondream import PhiConfig
|
8 |
|
9 |
from threading import Thread
|
10 |
+
|
11 |
|
12 |
|
13 |
class Moondream(PreTrainedModel):
|
|
|
84 |
|
85 |
with torch.no_grad():
|
86 |
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
87 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
88 |
|
89 |
# Start generation in a separate thread
|
90 |
thread = Thread(target=self.text_model.generate, kwargs={
|
|
|
96 |
|
97 |
# Yield generated text as it becomes available
|
98 |
for new_text in streamer:
|
99 |
+
print("NEW TEXT" + new_text)
|
100 |
yield new_text
|
101 |
|
102 |
thread.join()
|