Commit
·
505f4a2
1
Parent(s):
29a12ab
Test commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +88 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -15.19 +/- 3.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **TQC** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5798173dd504a519133aecdf118a02bca65f7ee0ced6dc66a127cc13fca5143
|
3 |
+
size 105179
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e2f304ca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f4e2f300540>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 1,
|
44 |
+
"num_timesteps": 10000,
|
45 |
+
"_total_timesteps": 10000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1672434881350440358,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAAxLqvbboFD032js+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
60 |
+
"desired_goal": "[[-0.11429217 0.03635474 0.18344961]]",
|
61 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": null,
|
68 |
+
"_episode_num": 0,
|
69 |
+
"use_sde": false,
|
70 |
+
"sde_sample_freq": -1,
|
71 |
+
"_current_progress_remaining": 0.0,
|
72 |
+
"ep_info_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyAkTRrOyK8CUhpRSlIwBbJRLMowBdJRHQDdctRNyo4x1fZQoaAZoCWgPQwi71XPS+74hwJSGlFKUaBVLMmgWR0A3mzzErGzbdX2UKGgGaAloD0MIOxixTwA1I8CUhpRSlGgVSzJoFkdAN9NdAxBVuXV9lChoBmgJaA9DCMvZO6OtWh7AlIaUUpRoFUsyaBZHQDgK8Fpwjt51fZQoaAZoCWgPQwjXh/VGrWggwJSGlFKUaBVLMmgWR0A4StwrDqGDdX2UKGgGaAloD0MIHSCYo8enIcCUhpRSlGgVSzJoFkdAOIKm4y44InV9lChoBmgJaA9DCAfr/xzmexvAlIaUUpRoFUsyaBZHQDi1wuM+/xl1fZQoaAZoCWgPQwhFYoIavq0lwJSGlFKUaBVLMmgWR0A48Fm4AjptdX2UKGgGaAloD0MII0kQroBaMcCUhpRSlGgVSzJoFkdAOS1AJLM9sHV9lChoBmgJaA9DCLsmpDUGvSvAlIaUUpRoFUsyaBZHQDlp+2E0zj51fZQoaAZoCWgPQwi1N/jCZLoUwJSGlFKUaBVLMmgWR0A5pdYGMXJpdX2UKGgGaAloD0MI4h3gSQsPLMCUhpRSlGgVSzJoFkdAOd4pH7P6bnV9lChoBmgJaA9DCD+LpUi+fjTAlIaUUpRoFUsyaBZHQDoXPdEb5uZ1fZQoaAZoCWgPQwibq+Y5ImcvwJSGlFKUaBVLMmgWR0A6U4//vOQhdX2UKGgGaAloD0MIYRvxZDerKsCUhpRSlGgVSzJoFkdAOo/VVghKUXV9lChoBmgJaA9DCBAiGXJsvSTAlIaUUpRoFUsyaBZHQDrL4wh4dIZ1fZQoaAZoCWgPQwiJz51g/8UgwJSGlFKUaBVLMmgWR0A7BVFhG6PKdX2UKGgGaAloD0MITaHzGruUG8CUhpRSlGgVSzJoFkdAOzuCf6Ggz3V9lChoBmgJaA9DCP2H9NvXgRXAlIaUUpRoFUsyaBZHQDt10vGp++d1fZQoaAZoCWgPQwiyu0BJgS0nwJSGlFKUaBVLMmgWR0A7rguAZsKtdX2UKGgGaAloD0MIFvn1Q2zQLsCUhpRSlGgVSzJoFkdAO+kXpGFzuHV9lChoBmgJaA9DCCQnE7cKrjDAlIaUUpRoFUsyaBZHQDwoJqqOtGN1fZQoaAZoCWgPQwhC7bd2ogQcwJSGlFKUaBVLMmgWR0A8YJ+UhV2idX2UKGgGaAloD0MIaoXpew3xHcCUhpRSlGgVSzJoFkdAPJ/wiJO32HV9lChoBmgJaA9DCAJjfQOTcyjAlIaUUpRoFUsyaBZHQDzfbL2YfGN1fZQoaAZoCWgPQwiZLVkV4Z4nwJSGlFKUaBVLMmgWR0A9G/io86mwdX2UKGgGaAloD0MIic+dYP+lJcCUhpRSlGgVSzJoFkdAPVgNgBtDUnV9lChoBmgJaA9DCBpQb0bN3zTAlIaUUpRoFUsyaBZHQD2TMqz7di51fZQoaAZoCWgPQwjU0twKYd0zwJSGlFKUaBVLMmgWR0A9yuEmICU5dX2UKGgGaAloD0MILXx9rUuFLcCUhpRSlGgVSzJoFkdAPgLteD3/P3V9lChoBmgJaA9DCIbGE0GcVzDAlIaUUpRoFUsyaBZHQD44F6iTMaF1fZQoaAZoCWgPQwjAlleutxUnwJSGlFKUaBVLMmgWR0A+bg0TDfm+dX2UKGgGaAloD0MIO4kI/yJgLcCUhpRSlGgVSzJoFkdAPqNMGorFwXV9lChoBmgJaA9DCCi5wyYy4ybAlIaUUpRoFUsyaBZHQD7YY8+zMRp1fZQoaAZoCWgPQwgbSu1FtC0xwJSGlFKUaBVLMmgWR0A/D3jdYW+HdX2UKGgGaAloD0MIO6dZoN05KsCUhpRSlGgVSzJoFkdAP0LJr+Hae3V9lChoBmgJaA9DCH5wPnWsWjPAlIaUUpRoFUsyaBZHQD98FFDv3Jx1fZQoaAZoCWgPQwgzp8tiYoMnwJSGlFKUaBVLMmgWR0A/sHGjsUqQdX2UKGgGaAloD0MIdcsO8Q9zL8CUhpRSlGgVSzJoFkdAP+NkauOjqXV9lChoBmgJaA9DCDZ4X5ULNS3AlIaUUpRoFUsyaBZHQEANosZpBX11fZQoaAZoCWgPQwjaxTTTvV4owJSGlFKUaBVLMmgWR0BAKn31zySWdX2UKGgGaAloD0MI6PnTRnXGMMCUhpRSlGgVSzJoFkdAQEaCg9Net3V9lChoBmgJaA9DCM4ckloo0TDAlIaUUpRoFUsyaBZHQEBjSkTHsC11fZQoaAZoCWgPQwgTKji8IKomwJSGlFKUaBVLMmgWR0BAfqjSG8EndX2UKGgGaAloD0MIGt1B7ExRK8CUhpRSlGgVSzJoFkdAQJsyBTXJ5nV9lChoBmgJaA9DCJ2huONNHiTAlIaUUpRoFUsyaBZHQEC5LDhtLth1fZQoaAZoCWgPQwjK+s3EdKExwJSGlFKUaBVLMmgWR0BA1pIMBp6AdX2UKGgGaAloD0MIlgoqqn69KcCUhpRSlGgVSzJoFkdAQPHLeQ+2VnV9lChoBmgJaA9DCH2W58Hd4SXAlIaUUpRoFUsyaBZHQEENhKDkELZ1fZQoaAZoCWgPQwhszsEzoQEhwJSGlFKUaBVLMmgWR0BBLEpiI+GHdX2UKGgGaAloD0MINUI/U68LHMCUhpRSlGgVSzJoFkdAQUfnOjZcs3V9lChoBmgJaA9DCGd/oNy27y/AlIaUUpRoFUsyaBZHQEFkP07KaG51fZQoaAZoCWgPQwhcOXtntBUkwJSGlFKUaBVLMmgWR0BBfsbWEsasdX2UKGgGaAloD0MI91llprS2K8CUhpRSlGgVSzJoFkdAQZxvgm7aqXV9lChoBmgJaA9DCHv18dB3RyfAlIaUUpRoFUsyaBZHQEG8b4Ju2ql1fZQoaAZoCWgPQwgdPBOaJHYtwJSGlFKUaBVLMmgWR0BB1xhUipvQdX2UKGgGaAloD0MIUYU/w5tNK8CUhpRSlGgVSzJoFkdAQfN2mpEQXnV9lChoBmgJaA9DCIkl5e5zNDHAlIaUUpRoFUsyaBZHQEIQya/h2nt1fZQoaAZoCWgPQwgawjHLnlQuwJSGlFKUaBVLMmgWR0BCMAH3UQTVdX2UKGgGaAloD0MIvviiPV6AK8CUhpRSlGgVSzJoFkdAQkvYDklu33V9lChoBmgJaA9DCF8Lem8M6THAlIaUUpRoFUsyaBZHQEJm8W9DhLp1fZQoaAZoCWgPQwhkk/yIX5kgwJSGlFKUaBVLMmgWR0BCf4j0L+gldX2UKGgGaAloD0MI6LzGLlGxMcCUhpRSlGgVSzJoFkdAQppq7Ackt3V9lChoBmgJaA9DCKLtmLorQzHAlIaUUpRoFUsyaBZHQEK0+zt1IRR1fZQoaAZoCWgPQwiZ2ecxytMZwJSGlFKUaBVLMmgWR0BCzqSPluFYdX2UKGgGaAloD0MIv+5054knJ8CUhpRSlGgVSzJoFkdAQugXuVopQXV9lChoBmgJaA9DCEVJSKRtFCfAlIaUUpRoFUsyaBZHQEMDbg0j1PF1fZQoaAZoCWgPQwjCTUaVYRwuwJSGlFKUaBVLMmgWR0BDHtRFZxJedX2UKGgGaAloD0MIiUM2kC6WJ8CUhpRSlGgVSzJoFkdAQztqBVdX1nV9lChoBmgJaA9DCLOz6J0K0CzAlIaUUpRoFUsyaBZHQENWl67dzn11fZQoaAZoCWgPQwhbe5+qQgMowJSGlFKUaBVLMmgWR0BDcUNSZSeidX2UKGgGaAloD0MIfqmfNxWJJcCUhpRSlGgVSzJoFkdAQ4o1pCa7VnV9lChoBmgJaA9DCAithy8T0TDAlIaUUpRoFUsyaBZHQEOlXYlIEr51fZQoaAZoCWgPQwhxdQDEXb0wwJSGlFKUaBVLMmgWR0BDwL0aqCHzdX2UKGgGaAloD0MI4Q1pVOAUK8CUhpRSlGgVSzJoFkdAQ9kK1G9YfXV9lChoBmgJaA9DCIY3a/C+0jDAlIaUUpRoFUsyaBZHQEPx238XN1R1fZQoaAZoCWgPQwiorKbriRYpwJSGlFKUaBVLMmgWR0BEDDArQPZqdX2UKGgGaAloD0MIWaMeotEtKsCUhpRSlGgVSzJoFkdARCyUNayKN3V9lChoBmgJaA9DCM4Xey++xDDAlIaUUpRoFUsyaBZHQERJwZwXIlt1fZQoaAZoCWgPQwgjMNY3MAkdwJSGlFKUaBVLMmgWR0BEY3mNipeedX2UKGgGaAloD0MIgNQmTu7PKsCUhpRSlGgVSzJoFkdARH/YvnKW9nV9lChoBmgJaA9DCAa8zLBRliHAlIaUUpRoFUsyaBZHQESZrfLs8gZ1fZQoaAZoCWgPQwhKz/QSY5UywJSGlFKUaBVLMmgWR0BEtgOz6ab4dX2UKGgGaAloD0MIgUHSp1W0KcCUhpRSlGgVSzJoFkdARM9b/wRXfnV9lChoBmgJaA9DCD57LlOT2CPAlIaUUpRoFUsyaBZHQEToYXO4XoF1fZQoaAZoCWgPQwiE04IXff0rwJSGlFKUaBVLMmgWR0BFA5S3solVdX2UKGgGaAloD0MIVkj5SbWfMcCUhpRSlGgVSzJoFkdARR5kTYdyUHV9lChoBmgJaA9DCFpIwOjytivAlIaUUpRoFUsyaBZHQEU5VxS5y2h1fZQoaAZoCWgPQwiMZmX7kCcawJSGlFKUaBVLMmgWR0BFU3UQTVUddX2UKGgGaAloD0MIFVW/0vkgJ8CUhpRSlGgVSzJoFkdARW3N1QqI8HV9lChoBmgJaA9DCGhCk8SSCiHAlIaUUpRoFUsyaBZHQEWHwe/5+H91fZQoaAZoCWgPQwgBMQkX8uAiwJSGlFKUaBVLMmgWR0BFoc3EQ5FPdX2UKGgGaAloD0MI1J0nnrN5McCUhpRSlGgVSzJoFkdARb6jgydnTXV9lChoBmgJaA9DCG3i5H6HajHAlIaUUpRoFUsyaBZHQEXYzAvcrRV1fZQoaAZoCWgPQwi5UPnX8jIowJSGlFKUaBVLMmgWR0BF8fgR9PUKdX2UKGgGaAloD0MIiJ6USQ2lKsCUhpRSlGgVSzJoFkdARgwaaTfR/nV9lChoBmgJaA9DCH0geedQLifAlIaUUpRoFUsyaBZHQEYm0hNdqtZ1fZQoaAZoCWgPQwjE6/oFu7kjwJSGlFKUaBVLMmgWR0BGQp8neBQOdX2UKGgGaAloD0MIBOj3/Zu3KcCUhpRSlGgVSzJoFkdARl9oHs1KoXV9lChoBmgJaA9DCK0yU1p/oyjAlIaUUpRoFUsyaBZHQEZ5iaRZED11ZS4="
|
75 |
+
},
|
76 |
+
"ep_success_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
79 |
+
},
|
80 |
+
"_n_updates": 2000,
|
81 |
+
"n_steps": 5,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gae_lambda": 1.0,
|
84 |
+
"ent_coef": 0.0,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"normalize_advantage": false
|
88 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7aad3dcc526a112be26db1f4b4febdd396a3dc2195166f4a49eb97cfbc38b17a
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48d5342ef0492fd5a06eeea91a78920985efefae589c4817fde1509a22f6c2ab
|
3 |
+
size 45374
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e2f304ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f300540>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672434881350440358, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAAxLqvbboFD032js+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11429217 0.03635474 0.18344961]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyAkTRrOyK8CUhpRSlIwBbJRLMowBdJRHQDdctRNyo4x1fZQoaAZoCWgPQwi71XPS+74hwJSGlFKUaBVLMmgWR0A3mzzErGzbdX2UKGgGaAloD0MIOxixTwA1I8CUhpRSlGgVSzJoFkdAN9NdAxBVuXV9lChoBmgJaA9DCMvZO6OtWh7AlIaUUpRoFUsyaBZHQDgK8Fpwjt51fZQoaAZoCWgPQwjXh/VGrWggwJSGlFKUaBVLMmgWR0A4StwrDqGDdX2UKGgGaAloD0MIHSCYo8enIcCUhpRSlGgVSzJoFkdAOIKm4y44InV9lChoBmgJaA9DCAfr/xzmexvAlIaUUpRoFUsyaBZHQDi1wuM+/xl1fZQoaAZoCWgPQwhFYoIavq0lwJSGlFKUaBVLMmgWR0A48Fm4AjptdX2UKGgGaAloD0MII0kQroBaMcCUhpRSlGgVSzJoFkdAOS1AJLM9sHV9lChoBmgJaA9DCLsmpDUGvSvAlIaUUpRoFUsyaBZHQDlp+2E0zj51fZQoaAZoCWgPQwi1N/jCZLoUwJSGlFKUaBVLMmgWR0A5pdYGMXJpdX2UKGgGaAloD0MI4h3gSQsPLMCUhpRSlGgVSzJoFkdAOd4pH7P6bnV9lChoBmgJaA9DCD+LpUi+fjTAlIaUUpRoFUsyaBZHQDoXPdEb5uZ1fZQoaAZoCWgPQwibq+Y5ImcvwJSGlFKUaBVLMmgWR0A6U4//vOQhdX2UKGgGaAloD0MIYRvxZDerKsCUhpRSlGgVSzJoFkdAOo/VVghKUXV9lChoBmgJaA9DCBAiGXJsvSTAlIaUUpRoFUsyaBZHQDrL4wh4dIZ1fZQoaAZoCWgPQwiJz51g/8UgwJSGlFKUaBVLMmgWR0A7BVFhG6PKdX2UKGgGaAloD0MITaHzGruUG8CUhpRSlGgVSzJoFkdAOzuCf6Ggz3V9lChoBmgJaA9DCP2H9NvXgRXAlIaUUpRoFUsyaBZHQDt10vGp++d1fZQoaAZoCWgPQwiyu0BJgS0nwJSGlFKUaBVLMmgWR0A7rguAZsKtdX2UKGgGaAloD0MIFvn1Q2zQLsCUhpRSlGgVSzJoFkdAO+kXpGFzuHV9lChoBmgJaA9DCCQnE7cKrjDAlIaUUpRoFUsyaBZHQDwoJqqOtGN1fZQoaAZoCWgPQwhC7bd2ogQcwJSGlFKUaBVLMmgWR0A8YJ+UhV2idX2UKGgGaAloD0MIaoXpew3xHcCUhpRSlGgVSzJoFkdAPJ/wiJO32HV9lChoBmgJaA9DCAJjfQOTcyjAlIaUUpRoFUsyaBZHQDzfbL2YfGN1fZQoaAZoCWgPQwiZLVkV4Z4nwJSGlFKUaBVLMmgWR0A9G/io86mwdX2UKGgGaAloD0MIic+dYP+lJcCUhpRSlGgVSzJoFkdAPVgNgBtDUnV9lChoBmgJaA9DCBpQb0bN3zTAlIaUUpRoFUsyaBZHQD2TMqz7di51fZQoaAZoCWgPQwjU0twKYd0zwJSGlFKUaBVLMmgWR0A9yuEmICU5dX2UKGgGaAloD0MILXx9rUuFLcCUhpRSlGgVSzJoFkdAPgLteD3/P3V9lChoBmgJaA9DCIbGE0GcVzDAlIaUUpRoFUsyaBZHQD44F6iTMaF1fZQoaAZoCWgPQwjAlleutxUnwJSGlFKUaBVLMmgWR0A+bg0TDfm+dX2UKGgGaAloD0MIO4kI/yJgLcCUhpRSlGgVSzJoFkdAPqNMGorFwXV9lChoBmgJaA9DCCi5wyYy4ybAlIaUUpRoFUsyaBZHQD7YY8+zMRp1fZQoaAZoCWgPQwgbSu1FtC0xwJSGlFKUaBVLMmgWR0A/D3jdYW+HdX2UKGgGaAloD0MIO6dZoN05KsCUhpRSlGgVSzJoFkdAP0LJr+Hae3V9lChoBmgJaA9DCH5wPnWsWjPAlIaUUpRoFUsyaBZHQD98FFDv3Jx1fZQoaAZoCWgPQwgzp8tiYoMnwJSGlFKUaBVLMmgWR0A/sHGjsUqQdX2UKGgGaAloD0MIdcsO8Q9zL8CUhpRSlGgVSzJoFkdAP+NkauOjqXV9lChoBmgJaA9DCDZ4X5ULNS3AlIaUUpRoFUsyaBZHQEANosZpBX11fZQoaAZoCWgPQwjaxTTTvV4owJSGlFKUaBVLMmgWR0BAKn31zySWdX2UKGgGaAloD0MI6PnTRnXGMMCUhpRSlGgVSzJoFkdAQEaCg9Net3V9lChoBmgJaA9DCM4ckloo0TDAlIaUUpRoFUsyaBZHQEBjSkTHsC11fZQoaAZoCWgPQwgTKji8IKomwJSGlFKUaBVLMmgWR0BAfqjSG8EndX2UKGgGaAloD0MIGt1B7ExRK8CUhpRSlGgVSzJoFkdAQJsyBTXJ5nV9lChoBmgJaA9DCJ2huONNHiTAlIaUUpRoFUsyaBZHQEC5LDhtLth1fZQoaAZoCWgPQwjK+s3EdKExwJSGlFKUaBVLMmgWR0BA1pIMBp6AdX2UKGgGaAloD0MIlgoqqn69KcCUhpRSlGgVSzJoFkdAQPHLeQ+2VnV9lChoBmgJaA9DCH2W58Hd4SXAlIaUUpRoFUsyaBZHQEENhKDkELZ1fZQoaAZoCWgPQwhszsEzoQEhwJSGlFKUaBVLMmgWR0BBLEpiI+GHdX2UKGgGaAloD0MINUI/U68LHMCUhpRSlGgVSzJoFkdAQUfnOjZcs3V9lChoBmgJaA9DCGd/oNy27y/AlIaUUpRoFUsyaBZHQEFkP07KaG51fZQoaAZoCWgPQwhcOXtntBUkwJSGlFKUaBVLMmgWR0BBfsbWEsasdX2UKGgGaAloD0MI91llprS2K8CUhpRSlGgVSzJoFkdAQZxvgm7aqXV9lChoBmgJaA9DCHv18dB3RyfAlIaUUpRoFUsyaBZHQEG8b4Ju2ql1fZQoaAZoCWgPQwgdPBOaJHYtwJSGlFKUaBVLMmgWR0BB1xhUipvQdX2UKGgGaAloD0MIUYU/w5tNK8CUhpRSlGgVSzJoFkdAQfN2mpEQXnV9lChoBmgJaA9DCIkl5e5zNDHAlIaUUpRoFUsyaBZHQEIQya/h2nt1fZQoaAZoCWgPQwgawjHLnlQuwJSGlFKUaBVLMmgWR0BCMAH3UQTVdX2UKGgGaAloD0MIvviiPV6AK8CUhpRSlGgVSzJoFkdAQkvYDklu33V9lChoBmgJaA9DCF8Lem8M6THAlIaUUpRoFUsyaBZHQEJm8W9DhLp1fZQoaAZoCWgPQwhkk/yIX5kgwJSGlFKUaBVLMmgWR0BCf4j0L+gldX2UKGgGaAloD0MI6LzGLlGxMcCUhpRSlGgVSzJoFkdAQppq7Ackt3V9lChoBmgJaA9DCKLtmLorQzHAlIaUUpRoFUsyaBZHQEK0+zt1IRR1fZQoaAZoCWgPQwiZ2ecxytMZwJSGlFKUaBVLMmgWR0BCzqSPluFYdX2UKGgGaAloD0MIv+5054knJ8CUhpRSlGgVSzJoFkdAQugXuVopQXV9lChoBmgJaA9DCEVJSKRtFCfAlIaUUpRoFUsyaBZHQEMDbg0j1PF1fZQoaAZoCWgPQwjCTUaVYRwuwJSGlFKUaBVLMmgWR0BDHtRFZxJedX2UKGgGaAloD0MIiUM2kC6WJ8CUhpRSlGgVSzJoFkdAQztqBVdX1nV9lChoBmgJaA9DCLOz6J0K0CzAlIaUUpRoFUsyaBZHQENWl67dzn11fZQoaAZoCWgPQwhbe5+qQgMowJSGlFKUaBVLMmgWR0BDcUNSZSeidX2UKGgGaAloD0MIfqmfNxWJJcCUhpRSlGgVSzJoFkdAQ4o1pCa7VnV9lChoBmgJaA9DCAithy8T0TDAlIaUUpRoFUsyaBZHQEOlXYlIEr51fZQoaAZoCWgPQwhxdQDEXb0wwJSGlFKUaBVLMmgWR0BDwL0aqCHzdX2UKGgGaAloD0MI4Q1pVOAUK8CUhpRSlGgVSzJoFkdAQ9kK1G9YfXV9lChoBmgJaA9DCIY3a/C+0jDAlIaUUpRoFUsyaBZHQEPx238XN1R1fZQoaAZoCWgPQwiorKbriRYpwJSGlFKUaBVLMmgWR0BEDDArQPZqdX2UKGgGaAloD0MIWaMeotEtKsCUhpRSlGgVSzJoFkdARCyUNayKN3V9lChoBmgJaA9DCM4Xey++xDDAlIaUUpRoFUsyaBZHQERJwZwXIlt1fZQoaAZoCWgPQwgjMNY3MAkdwJSGlFKUaBVLMmgWR0BEY3mNipeedX2UKGgGaAloD0MIgNQmTu7PKsCUhpRSlGgVSzJoFkdARH/YvnKW9nV9lChoBmgJaA9DCAa8zLBRliHAlIaUUpRoFUsyaBZHQESZrfLs8gZ1fZQoaAZoCWgPQwhKz/QSY5UywJSGlFKUaBVLMmgWR0BEtgOz6ab4dX2UKGgGaAloD0MIgUHSp1W0KcCUhpRSlGgVSzJoFkdARM9b/wRXfnV9lChoBmgJaA9DCD57LlOT2CPAlIaUUpRoFUsyaBZHQEToYXO4XoF1fZQoaAZoCWgPQwiE04IXff0rwJSGlFKUaBVLMmgWR0BFA5S3solVdX2UKGgGaAloD0MIVkj5SbWfMcCUhpRSlGgVSzJoFkdARR5kTYdyUHV9lChoBmgJaA9DCFpIwOjytivAlIaUUpRoFUsyaBZHQEU5VxS5y2h1fZQoaAZoCWgPQwiMZmX7kCcawJSGlFKUaBVLMmgWR0BFU3UQTVUddX2UKGgGaAloD0MIFVW/0vkgJ8CUhpRSlGgVSzJoFkdARW3N1QqI8HV9lChoBmgJaA9DCGhCk8SSCiHAlIaUUpRoFUsyaBZHQEWHwe/5+H91fZQoaAZoCWgPQwgBMQkX8uAiwJSGlFKUaBVLMmgWR0BFoc3EQ5FPdX2UKGgGaAloD0MI1J0nnrN5McCUhpRSlGgVSzJoFkdARb6jgydnTXV9lChoBmgJaA9DCG3i5H6HajHAlIaUUpRoFUsyaBZHQEXYzAvcrRV1fZQoaAZoCWgPQwi5UPnX8jIowJSGlFKUaBVLMmgWR0BF8fgR9PUKdX2UKGgGaAloD0MIiJ6USQ2lKsCUhpRSlGgVSzJoFkdARgwaaTfR/nV9lChoBmgJaA9DCH0geedQLifAlIaUUpRoFUsyaBZHQEYm0hNdqtZ1fZQoaAZoCWgPQwjE6/oFu7kjwJSGlFKUaBVLMmgWR0BGQp8neBQOdX2UKGgGaAloD0MIBOj3/Zu3KcCUhpRSlGgVSzJoFkdARl9oHs1KoXV9lChoBmgJaA9DCK0yU1p/oyjAlIaUUpRoFUsyaBZHQEZ5iaRZED11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (636 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -15.1895117, "std_reward": 3.2469981848517273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T21:15:54.564057"}
|