File size: 7,065 Bytes
9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a 9d65247 9228b7a 9d65247 9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a 997f017 9228b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
#os.environ["WANDB_DISABLED"] = "true"
import csv
import os
import torch
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoFeatureExtractor, Seq2SeqTrainer, training_args
from datasets import load_dataset, Image
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
import evaluate
import numpy as np
import nltk
from transformers import default_data_collator
import PIL
import wandb
import nltk
nltk.download('punkt')
import os
os.environ["WANDB_DISABLED"] = "true"
import torch
import torch_xla.core.xla_model as xm
dev = xm.xla_device()
# text preprocessing step
def tokenization_fn(captions, max_target_length):
"""Run tokenization on captions."""
labels = tokenizer(captions,
padding="max_length",
max_length=max_target_length).input_ids
return labels
# image preprocessing step
def feature_extraction_fn(image_paths, check_image=True):
"""
Run feature extraction on images
If `check_image` is `True`, the examples that fails during `Image.open()` will be caught and discarded.
Otherwise, an exception will be thrown.
"""
model_inputs = {}
if check_image:
images = []
to_keep = []
for image_file in image_paths:
try:
img = PIL.Image.open(image_file)
images.append(img)
to_keep.append(True)
except Exception:
to_keep.append(False)
else:
images = [PIL.Image.open(image_file) for image_file in image_paths]
encoder_inputs = feature_extractor(images=images, return_tensors="np")
return encoder_inputs.pixel_values
def transform(example_batch):
# Take a list of PIL images and turn them to pixel values
inputs = feature_extractor([x for x in example_batch['image']], return_tensors='pt')
# Don't forget to include the labels!
inputs['labels'] = example_batch['labels']
return inputs
def preprocess_fn(example_batch):
"""Run tokenization + image feature extraction"""
model_inputs = {}
model_inputs['pixel_values'] = feature_extraction_fn([x for x in example_batch['image_path']])
model_inputs['labels'] = tokenization_fn([x for x in example_batch['tags']], 128)
return model_inputs
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds,
decoded_labels)
result = metric.compute(predictions=decoded_preds,
references=decoded_labels,
use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [
np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
]
result["gen_len"] = np.mean(prediction_lens)
return result
def load_csv_as_dict(file_path):
with open(file_path, mode='r') as csv_file:
reader = csv.reader(csv_file)
result = {rows[0]: rows[1] for rows in reader}
return result
image_encoder_model = "google/vit-base-patch16-224"# actual use "google/vit-large-patch16-384"#google/vit-large-patch16-224-in21k
text_decode_model = "Thouph/GPT-E6-small"
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
image_encoder_model, text_decode_model)
model.eval()
for p in model.parameters():
p.requires_grad = False
# only allow training of cross attention parameters
for layer in model.decoder.transformer.h:
layer.crossattention.train()
for p in layer.crossattention.parameters():
p.requires_grad = True
layer.ln_cross_attn.train()
for p in layer.ln_cross_attn.parameters():
p.requires_grad = True
# image feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(image_encoder_model)
# text tokenizer
tokenizer = AutoTokenizer.from_pretrained("Thouph/six_tokenizer_filtered_space_merge")
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
tokenizer.pad_token = tokenizer.eos_token
# update the model config
model.config.eos_token_id = tokenizer.eos_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
output_dir = "vit-gpt-model"
model.save_pretrained(output_dir)
for name, param in model.named_parameters():
if "crossattention" not in name:
param.requires_grad = False
feature_extractor.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
dataset = load_dataset('csv', data_files=r"posts-2023-04-17_MD5_caption_sifted_no_symbol_purged_folder.csv")
print(dataset)
def add_image_path(example):
image_name = [i + '.jpg' for i in example["image_id"]]
folder_name=example["folder_name"]
image_path = [os.path.join(rf"/home/user/dump_small/{folder_name[i]}", image_name[i]) for i in range(len(image_name))]
example['image_path'] = image_path
return example
ds = dataset.map(add_image_path, batched=True, batch_size=8192)["train"]
print(ds)
ds = ds.train_test_split(test_size=0.02)
print(ds['train'][0:2])
ds.set_transform(preprocess_fn)
print(ds['train'][0:2])
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
eval_steps=100,
gradient_accumulation_steps=4,
per_device_train_batch_size=128,
weight_decay=0.1,
max_steps=10000,
warmup_steps=1000,
logging_strategy="steps",
save_steps=5000,
fp16=True,
tpu_num_cores=8,
per_device_eval_batch_size=128,
output_dir="image-captioning-output",
learning_rate=5e-4,
lr_scheduler_type="cosine",
)
def collate_fn(batch):
return {
'pixel_values': torch.stack([x['pixel_values'] for x in batch]),
'labels': torch.tensor([x['labels'] for x in batch])
}
metric = evaluate.load("rouge")
ignore_pad_token_for_loss = True
# instantiate trainer
trainer = Seq2SeqTrainer(
model=model,
tokenizer=feature_extractor,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=ds['train'],
eval_dataset=ds['test'],
data_collator=collate_fn,
)
trainer.train()
trainer.save_model("image-captioning-output1")
tokenizer.save_pretrained("image-captioning-output1")
|