File size: 6,885 Bytes
1574172 187c12b 1574172 9f65be4 1574172 9086e4d 1574172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import datasets
import pandas as pd
from PIL import Image
import multiprocessing as mp
from sklearn.model_selection import train_test_split
import torch
from torchvision import transforms
from torch.utils.data import Dataset
from transformers import Seq2SeqTrainer ,Seq2SeqTrainingArguments
from transformers import VisionEncoderDecoderModel , ViTFeatureExtractor
from transformers import AutoTokenizer , default_data_collator
import os
os.environ["WANDB_DISABLED"] = "true"
import torch_xla.core.xla_model as xm
dev = xm.xla_device()
if torch.cuda.is_available():
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
#os.environ["WANDB_DISABLED"] = "true"
class config :
ENCODER = "google/vit-base-patch16-224"
DECODER = "gpt2"
TRAIN_BATCH_SIZE = 64#8
VAL_BATCH_SIZE = 64#8
VAL_EPOCHS = 1
LR = 5e-5
SEED = 42
MAX_LEN = 128
SUMMARY_LEN = 20
WEIGHT_DECAY = 0.01
MEAN = (0.485, 0.456, 0.406)
STD = (0.229, 0.224, 0.225)
TRAIN_PCT = 0.95
NUM_WORKERS = mp.cpu_count()
EPOCHS = 1
IMG_SIZE = (224,224)
LABEL_MASK = -100
TOP_K = 10
TOP_P = 0.95
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
return outputs
AutoTokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
rouge = datasets.load_metric("rouge")
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
# all unnecessary tokens are removed
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = tokenizer.pad_token_id
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid
return {
"rouge2_precision": round(rouge_output.precision, 4),
"rouge2_recall": round(rouge_output.recall, 4),
"rouge2_fmeasure": round(rouge_output.fmeasure, 4),
}
feature_extractor = ViTFeatureExtractor.from_pretrained(config.ENCODER)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.unk_token
transforms = transforms.Compose(
[
#transforms.Resize(config.IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
)
]
)
class ImgDataset(torch.utils.data.Dataset):
def __init__(self, df, root_dir, tokenizer, feature_extractor, transform):
self.df = df
self.transform = transform
self.root_dir = root_dir
self.tokenizer = tokenizer
self.feature_extractor = feature_extractor
self.max_length = 128
def __len__(self, ):
return len(self.df)
def __getitem__(self, idx):
caption = self.df.tags.iloc[idx]
image = self.df.image_id.iloc[idx]+".jpg"
folder_name = str(self.df.folder_name.iloc[idx])
img_path = os.path.join(os.path.join(self.root_dir, folder_name), image)
img = Image.open(img_path).convert("RGB")
img = self.transform(img)
# Check if normalization is required
if img.min() < 0.0:
img = (img + 1.0) / 2.0
pixel_values = self.feature_extractor(img, return_tensors="pt").pixel_values
captions = self.tokenizer(caption,
padding='max_length',
max_length=self.max_length,
truncation=True).input_ids
captions = [caption if caption != self.tokenizer.pad_token_id else -100 for caption in captions]
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(captions)}
return encoding
for j in range(1, 179+1):
df=pd.read_csv(rf"posts/posts-2023-04-17_MD5_caption_sifted_no_symbol_purged_folder_{j}.csv")#r"Z:\posts-2023-04-17_MD5_caption_sifted_no_symbol_purged.csv")
train_df , val_df = train_test_split(df , test_size = 0.02)
print(df.head(3))
train_dataset = ImgDataset(
train_df,
root_dir = rf"dump_small",
tokenizer=tokenizer,
feature_extractor = feature_extractor ,
transform = transforms,
)
val_dataset = ImgDataset(
val_df ,
root_dir = rf"dump_small",
tokenizer=tokenizer,
feature_extractor = feature_extractor ,
transform = transforms
)
if os.path.exists('VIT_large_gpt2_model'):
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained('VIT_large_gpt2_model')
else:
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(config.ENCODER, config.DECODER)
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id
# make sure vocab size is set correctly
model.config.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = tokenizer.sep_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.max_length = 128
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 2
model.config.length_penalty = 2.0
model.config.num_beams = 2
training_args = Seq2SeqTrainingArguments(
output_dir='VIT_large_gpt2',
per_device_train_batch_size=config.TRAIN_BATCH_SIZE,
per_device_eval_batch_size=config.VAL_BATCH_SIZE,
predict_with_generate=True,
evaluation_strategy="steps",
do_train=True,
do_eval=True,
logging_steps=1000,
save_steps=1000,
warmup_steps=200,
learning_rate = 5e-5-j*2.2e-7,
#max_steps=400, # delete for full training
num_train_epochs = config.EPOCHS, #TRAIN_EPOCHS
overwrite_output_dir=True,
save_total_limit=3,
)
"""import transformers.trainer
from transformers.trainer import SequentialSampler
def sampler_monkey_patch(dataset, generator):
return SequentialSampler(dataset)
transformers.trainer.RandomSampler = sampler_monkey_patch"""
trainer = Seq2SeqTrainer(
tokenizer=feature_extractor,
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=default_data_collator,
)
try:
trainer.train(resume_from_checkpoint='VIT_large_gpt2_model')
except:
trainer.train()
trainer.save_model('VIT_large_gpt2_model')
|