File size: 6,885 Bytes
1574172
 
 
 
 
 
 
 
187c12b
 
1574172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f65be4
 
1574172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9086e4d
 
 
 
1574172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

import datasets
import pandas as pd
from PIL import Image
import multiprocessing as mp
from sklearn.model_selection import train_test_split

import torch
from torchvision import transforms
from torch.utils.data import Dataset

from transformers import Seq2SeqTrainer ,Seq2SeqTrainingArguments
from transformers import VisionEncoderDecoderModel , ViTFeatureExtractor
from transformers import AutoTokenizer , default_data_collator
import os
os.environ["WANDB_DISABLED"] = "true"
import torch_xla.core.xla_model as xm

dev = xm.xla_device()


if torch.cuda.is_available():

    device = torch.device("cuda")

    print('There are %d GPU(s) available.' % torch.cuda.device_count())

    print('We will use the GPU:', torch.cuda.get_device_name(0))

else:
    print('No GPU available, using the CPU instead.')
    device = torch.device("cpu")



#os.environ["WANDB_DISABLED"] = "true"
class config :
    ENCODER = "google/vit-base-patch16-224"
    DECODER = "gpt2"
    TRAIN_BATCH_SIZE = 64#8
    VAL_BATCH_SIZE = 64#8
    VAL_EPOCHS = 1
    LR = 5e-5
    SEED = 42
    MAX_LEN = 128
    SUMMARY_LEN = 20
    WEIGHT_DECAY = 0.01
    MEAN = (0.485, 0.456, 0.406)
    STD = (0.229, 0.224, 0.225)
    TRAIN_PCT = 0.95
    NUM_WORKERS = mp.cpu_count()
    EPOCHS = 1
    IMG_SIZE = (224,224)
    LABEL_MASK = -100
    TOP_K = 10
    TOP_P = 0.95


def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
    outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
    return outputs
AutoTokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens



rouge = datasets.load_metric("rouge")

def compute_metrics(pred):
    labels_ids = pred.label_ids
    pred_ids = pred.predictions

    # all unnecessary tokens are removed
    pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
    labels_ids[labels_ids == -100] = tokenizer.pad_token_id
    label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

    rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid

    return {
        "rouge2_precision": round(rouge_output.precision, 4),
        "rouge2_recall": round(rouge_output.recall, 4),
        "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
    }


feature_extractor = ViTFeatureExtractor.from_pretrained(config.ENCODER)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.unk_token

transforms = transforms.Compose(
    [
        #transforms.Resize(config.IMG_SIZE),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.5, 0.5, 0.5],
            std=[0.5, 0.5, 0.5],
        )
   ]
)



class ImgDataset(torch.utils.data.Dataset):
    def __init__(self, df, root_dir, tokenizer, feature_extractor, transform):
        self.df = df
        self.transform = transform
        self.root_dir = root_dir
        self.tokenizer = tokenizer
        self.feature_extractor = feature_extractor
        self.max_length = 128

    def __len__(self, ):
        return len(self.df)

    def __getitem__(self, idx):
        caption = self.df.tags.iloc[idx]
        image = self.df.image_id.iloc[idx]+".jpg"
        folder_name = str(self.df.folder_name.iloc[idx])
        img_path = os.path.join(os.path.join(self.root_dir, folder_name), image)
        img = Image.open(img_path).convert("RGB")


        img = self.transform(img)

        # Check if normalization is required
        if img.min() < 0.0:
            img = (img + 1.0) / 2.0

        pixel_values = self.feature_extractor(img, return_tensors="pt").pixel_values
        captions = self.tokenizer(caption,
                                  padding='max_length',
                                  max_length=self.max_length,
                                  truncation=True).input_ids
        captions = [caption if caption != self.tokenizer.pad_token_id else -100 for caption in captions]
        encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(captions)}
        return encoding

for j in range(1, 179+1):
    df=pd.read_csv(rf"posts/posts-2023-04-17_MD5_caption_sifted_no_symbol_purged_folder_{j}.csv")#r"Z:\posts-2023-04-17_MD5_caption_sifted_no_symbol_purged.csv")
    train_df , val_df = train_test_split(df , test_size = 0.02)
    print(df.head(3))

    train_dataset = ImgDataset(
        train_df,
        root_dir = rf"dump_small",
        tokenizer=tokenizer,
        feature_extractor = feature_extractor ,
        transform = transforms,
    )

    val_dataset = ImgDataset(
        val_df ,
        root_dir = rf"dump_small",
        tokenizer=tokenizer,
        feature_extractor = feature_extractor ,
        transform  = transforms
    )

    if os.path.exists('VIT_large_gpt2_model'):
        model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained('VIT_large_gpt2_model')
    else:
        model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(config.ENCODER, config.DECODER)


    model.config.decoder_start_token_id = tokenizer.cls_token_id
    model.config.pad_token_id = tokenizer.pad_token_id
    # make sure vocab size is set correctly
    model.config.vocab_size = model.config.decoder.vocab_size
    # set beam search parameters
    model.config.eos_token_id = tokenizer.sep_token_id
    model.config.decoder_start_token_id = tokenizer.bos_token_id
    model.config.max_length = 128
    model.config.early_stopping = True
    model.config.no_repeat_ngram_size = 2
    model.config.length_penalty = 2.0
    model.config.num_beams = 2

    training_args = Seq2SeqTrainingArguments(
        output_dir='VIT_large_gpt2',
        per_device_train_batch_size=config.TRAIN_BATCH_SIZE,
        per_device_eval_batch_size=config.VAL_BATCH_SIZE,
        predict_with_generate=True,
        evaluation_strategy="steps",
        do_train=True,
        do_eval=True,
        logging_steps=1000,
        save_steps=1000,
        warmup_steps=200,
        learning_rate = 5e-5-j*2.2e-7,
        #max_steps=400, # delete for full training
        num_train_epochs = config.EPOCHS, #TRAIN_EPOCHS
        overwrite_output_dir=True,
        save_total_limit=3,
    )




    """import transformers.trainer
    from transformers.trainer import SequentialSampler
    
    
    def sampler_monkey_patch(dataset, generator):
        return SequentialSampler(dataset)
    
    
    transformers.trainer.RandomSampler = sampler_monkey_patch"""

    trainer = Seq2SeqTrainer(
        tokenizer=feature_extractor,
        model=model,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=train_dataset,
        eval_dataset=val_dataset,
        data_collator=default_data_collator,
    )
    try:
        trainer.train(resume_from_checkpoint='VIT_large_gpt2_model')
    except:
        trainer.train()
    trainer.save_model('VIT_large_gpt2_model')