File size: 21,753 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
"""
MSHT
Models ver: OCT 27th 20:00 official release
by the authors, check our github page:
https://github.com/sagizty/Multi-Stage-Hybrid-Transformer
ResNet stages' feature map
# input = 3, 384, 384
torch.Size([1, 256, 96, 96])
torch.Size([1, 512, 48, 48])
torch.Size([1, 1024, 24, 24])
torch.Size([1, 2048, 12, 12])
torch.Size([1, 1000])
# input = 3, 224, 224
torch.Size([1, 256, 56, 56])
torch.Size([1, 512, 28, 28])
torch.Size([1, 1024, 14, 14])
torch.Size([1, 2048, 7, 7])
torch.Size([1, 1000])
ref
https://note.youdao.com/ynoteshare1/index.html?id=5a7dbe1a71713c317062ddeedd97d98e&type=note
"""
import torch
from torch import nn
from functools import partial
from torchsummary import summary
import os
from Backbone import Transformer_blocks
# ResNet Bottleneck_block_constructor
class Bottleneck_block_constructor(nn.Module):
extention = 4
# 定义初始化的网络和参数
def __init__(self, inplane, midplane, stride, downsample=None):
super(Bottleneck_block_constructor, self).__init__()
outplane = midplane * self.extention
self.conv1 = nn.Conv2d(inplane, midplane, kernel_size=1, stride=stride, bias=False)
self.bn1 = nn.BatchNorm2d(midplane)
self.conv2 = nn.Conv2d(midplane, midplane, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(midplane)
self.conv3 = nn.Conv2d(midplane, outplane, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(midplane * self.extention)
self.relu = nn.ReLU(inplace=False)
self.downsample = downsample
self.stride = stride
def forward(self, x):
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.relu(self.bn3(self.conv3(out)))
if self.downsample is not None:
residual = self.downsample(x)
else:
residual = x
out += residual
out = self.relu(out)
return out
# Hybrid_backbone of ResNets
class Hybrid_backbone_4(nn.Module):
def __init__(self, block_constructor, bottleneck_channels_setting=None, identity_layers_setting=None,
stage_stride_setting=None, fc_num_classes=None, feature_idx=None):
if bottleneck_channels_setting is None:
bottleneck_channels_setting = [64, 128, 256, 512]
if identity_layers_setting is None:
identity_layers_setting = [3, 4, 6, 3]
if stage_stride_setting is None:
stage_stride_setting = [1, 2, 2, 2]
self.inplane = 64
self.fc_num_classes = fc_num_classes
self.feature_idx = feature_idx
super(Hybrid_backbone_4, self).__init__()
self.block_constructor = block_constructor # Bottleneck_block_constructor
self.bcs = bottleneck_channels_setting # [64, 128, 256, 512]
self.ils = identity_layers_setting # [3, 4, 6, 3]
self.sss = stage_stride_setting # [1, 2, 2, 2]
# stem
# alter the RGB pic chanel to match inplane
self.conv1 = nn.Conv2d(3, self.inplane, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplane)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, padding=1, stride=2)
# ResNet stages
self.layer1 = self.make_stage_layer(self.block_constructor, self.bcs[0], self.ils[0], self.sss[0])
self.layer2 = self.make_stage_layer(self.block_constructor, self.bcs[1], self.ils[1], self.sss[1])
self.layer3 = self.make_stage_layer(self.block_constructor, self.bcs[2], self.ils[2], self.sss[2])
self.layer4 = self.make_stage_layer(self.block_constructor, self.bcs[3], self.ils[3], self.sss[3])
# cls head
if self.fc_num_classes is not None:
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * self.block_constructor.extention, fc_num_classes)
def forward(self, x):
# stem
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
stem_out = self.maxpool(out)
# Resnet block of 4 stages
stage1_out = self.layer1(stem_out)
stage2_out = self.layer2(stage1_out)
stage3_out = self.layer3(stage2_out)
stage4_out = self.layer4(stage3_out)
if self.fc_num_classes is not None:
# connect to cls head mlp if asked
fc_out = self.avgpool(stage4_out)
fc_out = torch.flatten(fc_out, 1)
fc_out = self.fc(fc_out)
# get what we need for different usage
if self.feature_idx == 'stages':
if self.fc_num_classes is not None:
return stage1_out, stage2_out, stage3_out, stage4_out, fc_out
else:
return stage1_out, stage2_out, stage3_out, stage4_out
elif self.feature_idx == 'features':
if self.fc_num_classes is not None:
return stem_out, stage1_out, stage2_out, stage3_out, stage4_out, fc_out
else:
return stem_out, stage1_out, stage2_out, stage3_out, stage4_out
else: # self.feature_idx is None
if self.fc_num_classes is not None:
return fc_out
else:
return stage4_out
def make_stage_layer(self, block_constractor, midplane, block_num, stride=1):
"""
block:
midplane:usually = output chanel/4
block_num:
stride:stride of the ResNet Conv Block
"""
block_list = []
outplane = midplane * block_constractor.extention # extention
if stride != 1 or self.inplane != outplane:
downsample = nn.Sequential(
nn.Conv2d(self.inplane, outplane, stride=stride, kernel_size=1, bias=False),
nn.BatchNorm2d(midplane * block_constractor.extention)
)
else:
downsample = None
# Conv Block
conv_block = block_constractor(self.inplane, midplane, stride=stride, downsample=downsample)
block_list.append(conv_block)
self.inplane = outplane # update inplane for the next stage
# Identity Block
for i in range(1, block_num):
block_list.append(block_constractor(self.inplane, midplane, stride=1, downsample=None))
return nn.Sequential(*block_list) # stack blocks
class Hybrid_backbone_3(nn.Module): # 3 stages version
def __init__(self, block_constructor, bottleneck_channels_setting=None, identity_layers_setting=None,
stage_stride_setting=None, fc_num_classes=None, feature_idx=None):
if bottleneck_channels_setting is None:
bottleneck_channels_setting = [64, 128, 256]
if identity_layers_setting is None:
identity_layers_setting = [3, 4, 6]
if stage_stride_setting is None:
stage_stride_setting = [1, 2, 2]
self.inplane = 64
self.fc_num_classes = fc_num_classes
self.feature_idx = feature_idx
super(Hybrid_backbone_3, self).__init__()
self.block_constructor = block_constructor # Bottleneck_block_constructor
self.bcs = bottleneck_channels_setting # [64, 128, 256]
self.ils = identity_layers_setting # [3, 4, 6]
self.sss = stage_stride_setting # [1, 2, 2]
# stem
self.conv1 = nn.Conv2d(3, self.inplane, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplane)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, padding=1, stride=2)
# ResNet 3 stages
self.layer1 = self.make_stage_layer(self.block_constructor, self.bcs[0], self.ils[0], self.sss[0])
self.layer2 = self.make_stage_layer(self.block_constructor, self.bcs[1], self.ils[1], self.sss[1])
self.layer3 = self.make_stage_layer(self.block_constructor, self.bcs[2], self.ils[2], self.sss[2])
if self.fc_num_classes is not None:
self.avgpool = nn.AvgPool2d(24) # 224-14 384-24
self.fc = nn.Linear(self.bcs[-1] * self.block_constructor.extention, fc_num_classes)
def forward(self, x):
# stem:conv+bn+relu+maxpool
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
stem_out = self.maxpool(out)
# Resnet 3 stages
stage1_out = self.layer1(stem_out)
stage2_out = self.layer2(stage1_out)
stage3_out = self.layer3(stage2_out)
if self.fc_num_classes is not None:
fc_out = self.avgpool(stage3_out)
fc_out = torch.flatten(fc_out, 1)
fc_out = self.fc(fc_out)
if self.feature_idx == 'stages':
if self.fc_num_classes is not None:
return stage1_out, stage2_out, stage3_out, fc_out
else:
return stage1_out, stage2_out, stage3_out
elif self.feature_idx == 'features':
if self.fc_num_classes is not None:
return stem_out, stage1_out, stage2_out, stage3_out, fc_out
else:
return stem_out, stage1_out, stage2_out, stage3_out
else: # self.feature_idx is None
if self.fc_num_classes is not None:
return fc_out
else:
return stage3_out
def make_stage_layer(self, block_constractor, midplane, block_num, stride=1):
"""
block:
midplane:
block_num:
stride:
"""
block_list = []
outplane = midplane * block_constractor.extention # extention
if stride != 1 or self.inplane != outplane:
downsample = nn.Sequential(
nn.Conv2d(self.inplane, outplane, stride=stride, kernel_size=1, bias=False),
nn.BatchNorm2d(midplane * block_constractor.extention)
)
else:
downsample = None
# Conv Block
conv_block = block_constractor(self.inplane, midplane, stride=stride, downsample=downsample)
block_list.append(conv_block)
self.inplane = outplane
# Identity Block
for i in range(1, block_num):
block_list.append(block_constractor(self.inplane, midplane, stride=1, downsample=None))
return nn.Sequential(*block_list)
def Hybrid_a(backbone, img_size=224, patch_size=1, in_chans=3, num_classes=1000, embed_dim=768, depth=8,
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=None, act_layer=None):
# directly stack CNNs and Transformer blocks
embed_layer = partial(Transformer_blocks.Hybrid_feature_map_Embed, backbone=backbone)
Hybrid_model = Transformer_blocks.VisionTransformer(img_size, patch_size, in_chans, num_classes, embed_dim, depth,
num_heads, mlp_ratio, qkv_bias, representation_size,
drop_rate, attn_drop_rate, drop_path_rate, embed_layer,
norm_layer, act_layer)
return Hybrid_model
def create_model(model_idx, edge_size, pretrained=True, num_classes=2, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., use_cls_token=True, use_pos_embedding=True, use_att_module='SimAM'):
"""
get one of MSHT models
:param model_idx: the model we are going to use. by the format of Model_size_other_info
:param edge_size: the input edge size of the dataloder
:param pretrained: The backbone CNN is initiate randomly or by its official Pretrained models
:param num_classes: classification required number of your dataset
:param drop_rate: The dropout layer's probility of proposed models
:param attn_drop_rate: The dropout layer(right after the MHSA block or MHGA block)'s probility of proposed models
:param drop_path_rate: The probility of stochastic depth
:param use_cls_token: To use the class token
:param use_pos_embedding: To use the positional enbedding
:param use_att_module: To use which attention module in the FGD Focus block
# use_att_module in ['SimAM', 'CBAM', 'SE'] different attention module we applied in the ablation study
:return: prepared model
"""
if pretrained:
from torchvision import models
backbone_weights = models.resnet50(pretrained=True).state_dict()
# True for pretrained Resnet50 model, False will randomly initiate
else:
backbone_weights = None
if model_idx[0:11] == 'Hybrid1_224' and edge_size == 224: # ablation study: no focus depth=8 edge_size == 224
backbone = Hybrid_backbone_4(block_constructor=Bottleneck_block_constructor,
bottleneck_channels_setting=[64, 128, 256, 512],
identity_layers_setting=[3, 4, 6, 3],
stage_stride_setting=[1, 2, 2, 2],
fc_num_classes=None,
feature_idx=None)
if pretrained:
try:
backbone.load_state_dict(backbone_weights, False)
except:
print("backbone not loaded")
else:
print("backbone loaded")
model = Hybrid_a(backbone, img_size=edge_size, patch_size=1, in_chans=3, num_classes=num_classes, embed_dim=768,
depth=8, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate,
norm_layer=None, act_layer=None)
elif model_idx[0:11] == 'Hybrid1_384' and edge_size == 384: # ablation study: no focus depth=8 edge_size == 384
backbone = Hybrid_backbone_4(block_constructor=Bottleneck_block_constructor,
bottleneck_channels_setting=[64, 128, 256, 512],
identity_layers_setting=[3, 4, 6, 3],
stage_stride_setting=[1, 2, 2, 2],
fc_num_classes=None,
feature_idx=None)
if pretrained:
try:
backbone.load_state_dict(backbone_weights, False)
except:
print("backbone not loaded")
else:
print("backbone loaded")
model = Hybrid_a(backbone, img_size=edge_size, patch_size=1, in_chans=3, num_classes=num_classes, embed_dim=768,
depth=8, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate,
norm_layer=None, act_layer=None)
elif model_idx[0:11] == 'Hybrid2_224' and edge_size == 224: # Proposed model ablation study: edge_size==224
backbone = Hybrid_backbone_4(block_constructor=Bottleneck_block_constructor,
bottleneck_channels_setting=[64, 128, 256, 512],
identity_layers_setting=[3, 4, 6, 3],
stage_stride_setting=[1, 2, 2, 2],
fc_num_classes=None,
feature_idx='stages')
if pretrained:
try:
backbone.load_state_dict(backbone_weights, False)
except:
print("backbone not loaded")
else:
print("backbone loaded")
model = Transformer_blocks.Stage_wise_hybrid_Transformer(backbone, num_classes=num_classes,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
use_cls_token=use_cls_token,
use_pos_embedding=use_pos_embedding,
use_att_module=use_att_module,
stage_size=(56, 28, 14, 7),
stage_dim=[256, 512, 1024, 2048])
elif model_idx[0:11] == 'Hybrid2_384' and edge_size == 384: # Proposed model 384 !!!
backbone = Hybrid_backbone_4(block_constructor=Bottleneck_block_constructor,
bottleneck_channels_setting=[64, 128, 256, 512],
identity_layers_setting=[3, 4, 6, 3],
stage_stride_setting=[1, 2, 2, 2],
fc_num_classes=None,
feature_idx='stages')
if pretrained:
try:
backbone.load_state_dict(backbone_weights, False)
except:
print("backbone not loaded")
else:
print("backbone loaded")
model = Transformer_blocks.Stage_wise_hybrid_Transformer(backbone, num_classes=num_classes,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
use_cls_token=use_cls_token,
use_pos_embedding=use_pos_embedding,
use_att_module=use_att_module,
stage_size=(96, 48, 24, 12),
stage_dim=[256, 512, 1024, 2048])
elif model_idx[0:11] == 'Hybrid3_224' and edge_size == 224: # Proposed model ablation study: edge_size==224
backbone = Hybrid_backbone_3(block_constructor=Bottleneck_block_constructor,
bottleneck_channels_setting=[64, 128, 256],
identity_layers_setting=[3, 4, 6],
stage_stride_setting=[1, 2, 2],
fc_num_classes=None,
feature_idx='stages')
if pretrained:
try:
backbone.load_state_dict(backbone_weights, False)
except:
print("backbone not loaded")
else:
print("backbone loaded")
model = Transformer_blocks.Stage_wise_hybrid_Transformer(backbone, num_classes=num_classes,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
use_cls_token=use_cls_token,
use_pos_embedding=use_pos_embedding,
use_att_module=use_att_module,
stage_size=(56, 28, 14),
stage_dim=[256, 512, 1024])
elif model_idx[0:11] == 'Hybrid3_384' and edge_size == 384: # Proposed model 384 !!!
backbone = Hybrid_backbone_3(block_constructor=Bottleneck_block_constructor,
bottleneck_channels_setting=[64, 128, 256],
identity_layers_setting=[3, 4, 6],
stage_stride_setting=[1, 2, 2],
fc_num_classes=None,
feature_idx='stages')
if pretrained:
try:
backbone.load_state_dict(backbone_weights, False)
except:
print("backbone not loaded")
else:
print("backbone loaded")
model = Transformer_blocks.Stage_wise_hybrid_Transformer(backbone, num_classes=num_classes,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
use_cls_token=use_cls_token,
use_pos_embedding=use_pos_embedding,
use_att_module=use_att_module,
stage_size=(96, 48, 24),
stage_dim=[256, 512, 1024])
else:
print('not a valid hybrid model')
return -1
return model
|